Problem:
Solve the following equation
F_{a_1} + F_{a_2} + \ldots + F_{a_k} = F_{a_1+a_2+\ldots+a_k} , where
F_i is the
i-th
Fibonacci number.
Proposed by Roberto Bosch Cabrera.
Solution:
If
k=1 the equation has infinitely many solutions. Let
k \geq 2 and suppose that
1 \leq a_1 \leq a_2 \leq \ldots \leq a_k.
We have five cases.
(i)
k=2. Suppose that
a_1+a_2 \leq 4. It's easy to see that
(1,2) and
(1,3) are solutions. Now, suppose that
a_1+a_2 \geq 5. If
a_1=1, then
a_2 \geq 4 and
F_{a_1+a_2-2}>F_{a_1}. If
a_1>1, then
a_2>2, so
F_{a_1+a_2-1}>F_{a_2} and
F_{a_1+a_2}=F_{a_1+a_2-1}+F_{a_1+a_2-2} > F_{a_2}+F_{a_1}, i.e. the equation has no solution if
a_1+a_2 \geq 5.
(ii)
k=3. There are no solutions when
a_3=1. If
a_3=2, we have the solution
(1,1,2). It's easy to see that there are no more solutions such that
a_2=1 and
a_3>2. Suppose that
a_3 \geq 2 and
a_2 \geq 2. If
a_3=2, we get
F_{a_1+a_2+a_3-1}>F_{a_3} and if
a_3>2, we get
F_{a_1+a_2+a_3-2}>F_{a_1+a_2}, so
F_{a_1+a_2+a_3}=F_{a_1+a_2+a_3-1}+F_{a_1+a_2+a_3-2}>F_{a_3}+F_{a_1+a_2} \geq F_{a_3}+F_{a_2}+F_{a_1}, i.e. no solution if
a_3>2.
(iii)
k=4. A simple check shows that there are no solutions if
a_4=1. If
a_4 \geq 2 and
a_3=1 there are no solutions, and if
a_3 \geq 2, we can argue similarly to the previous case and conclude that
F_{a_1+a_2+a_3+a_4} > F_{a_4}+F_{a_1+a_2+a_3} \geq F_{a_4}+F_{a_3}+F_{a_2}+F_{a_1}, i.e. no solution in this case.
(iv)
k=5. If
a_5=1, we immediately see that
(1,1,1,1,1) is a solution. If
a_5 \geq 2 and
a_4=1, there are no solutions and if
a_4 \geq 2 we get
F_{a_1+a_2+a_3+a_4+a_5}>F_{a_5}+F_{a_1+a_2+a_3+a_4}\geq F_{a_5}+F_{a_4}+F_{a_3}+F_{a_2}+F_{a_1}.
(v)
k>5. Clearly,
a_1+a_2+\ldots+a_k \geq k. If
a_k=1, there are no solutions since
a_1+a_2+\ldots+a_k=k and
F_k>k. If
a_k \geq 2 and
a_{k-1}=1, then
a_1+a_2+\ldots+a_{k-1}=k-1 and
\begin{array}{lcl} F_{a_1+a_2+\ldots+a_k}&=&F_{a_1+a_2+\ldots+a_k-1}+F_{a_1+a_2+\ldots+a_k-2}\\&>&F_{a_k}+F_{a_1+a_2+\ldots+a_{k-1}} = F_{a_k}+F_{k-1} \\ & \geq & F_{a_k}+k-1 \\ & = & F_{a_k}+F_{a_{k-1}}+\ldots+F_{a_1}. \end{array}
If
a_k \geq 2 and
a_{k-1} \geq 2, we have
\begin{array}{lcl} F_{a_1+a_2+\ldots+a_k} & > & F_{a_k}+ F_{a_1+a_2+\ldots+a_{k-1}}\\ & > & F_{a_k}+F_{a_{k-1}} + F_{a_1+a_2+\ldots+a_{k-2}} \\ & \geq & F_{a_k}+F_{a_{k-1}}+F_{a_{k-2}}+F_{a_1+a_2+\ldots+a_{k-3}} \\ & \vdots & \vdots \\ & \geq & F_{a_k}+F_{a_{k-1}}+\ldots+F_{a_2}+F_{a_1}-1 , \end{array} which gives
F_{a_1+a_2+\ldots+a_k} > F_{a_k}+F_{a_{k-1}}+\ldots+F_{a_2}+F_{a_1}, so there are no solutions in this case.