Define an increasing sequence $(a_k)_{k \in \mathbb{Z}^+}$ to be attractive if $\sum_{k=1}^\infty \dfrac{1}{a_k}$ diverges and $\sum_{k=1}^\infty \dfrac{1}{a^2_k}$ converges. Prove that there is an attractive sequence $a_k$ such that $a_k\sqrt{k}$ is also an attractive sequence.
Proposed by Ivan Borsenco.
Solution:
We claim that $a_k = \sqrt{k} \log (k+1)$ do the trick. Indeed, $a_k = \sqrt{k} \log (k+1)$ is obviously increasing for all $k \geq 1$. Moreover, since $\dfrac{1}{k} \leq \dfrac{1}{\sqrt{k}\log (k+1)}$ for all $k \geq 1$ and $\displaystyle \int_1^\infty \dfrac{1}{x\log^2 (x+1)} \ dx$ converges we obtain that
$$\lim_{n \to \infty} \sum_{k=1}^n \dfrac{1}{\sqrt{k}\log (k+1)} = \infty, \qquad \lim_{n \to \infty} \sum_{k=1}^n \dfrac{1}{k \log^2 (k+1)} = M < \infty$$
as a consequence of the Comparison Test and the Integral Test.
Finally, $a_k\sqrt{k}=k \log (k+1)$ is also attractive. As a matter of fact, $k \log (k+1)$ is increasing for all $k \geq 1$, $\displaystyle \int_1^\infty \dfrac{1}{x\log (x+1)} \ dx$ diverges and $\dfrac{1}{k^2 \log^2 (k+1)} \leq \dfrac{1}{k^2}$ for all $k \geq 2$, therefore
$$\lim_{n \to \infty} \sum_{k=1}^n \dfrac{1}{k\log (k+1)} = \infty, \qquad \lim_{n \to \infty} \sum_{k=1}^n \dfrac{1}{k^2 \log^2 (k+1)} = N < \infty.$$
$$\lim_{n \to \infty} \sum_{k=1}^n \dfrac{1}{\sqrt{k}\log (k+1)} = \infty, \qquad \lim_{n \to \infty} \sum_{k=1}^n \dfrac{1}{k \log^2 (k+1)} = M < \infty$$
as a consequence of the Comparison Test and the Integral Test.
Finally, $a_k\sqrt{k}=k \log (k+1)$ is also attractive. As a matter of fact, $k \log (k+1)$ is increasing for all $k \geq 1$, $\displaystyle \int_1^\infty \dfrac{1}{x\log (x+1)} \ dx$ diverges and $\dfrac{1}{k^2 \log^2 (k+1)} \leq \dfrac{1}{k^2}$ for all $k \geq 2$, therefore
$$\lim_{n \to \infty} \sum_{k=1}^n \dfrac{1}{k\log (k+1)} = \infty, \qquad \lim_{n \to \infty} \sum_{k=1}^n \dfrac{1}{k^2 \log^2 (k+1)} = N < \infty.$$