Loading [MathJax]/extensions/TeX/mathchoice.js

Tuesday, April 3, 2012

Mathematical Reflections 2012, Issue 1 - Problem J220

Problem:
Find the least prime p for which p=a^2_k+kb^2_k, k=1,\ldots,5, for some (a_k,b_k) in \mathbb{Z} \times \mathbb{Z}.

Proposed by Cosmin Pohoata.

Solution:
We have p \equiv a^2_k \pmod{k} for k=2,\ldots,5, so \begin{array}{lll} p \equiv 1 \pmod{2} \\ p \equiv 1 \pmod{3} \\ p \equiv 1 \pmod{4} \\ p \equiv 1,4 \pmod{5}. \end{array} Then p=1+60n or p=49+60n where n \in \mathbb{N}. Clearly p \neq 1,49. Moreover, p \neq 61,109,121,169,181,229 since 121,169 are not primes and the equation
a^2_2+2b^2_2 \equiv 5 \pmod{8} has no solution. We conclude that p=241 is the least prime which satisfies the given conditions, since
241=15^2+4^2=13^2+2\cdot6^2=7^2+3\cdot8^2=15^2+4\cdot2^2=14^2+5\cdot3^2. 

No comments:

Post a Comment