Processing math: 100%

Tuesday, October 15, 2013

Mathematical Reflections 2013, Issue 4 - Problem J273

Problem:
Let a,b,c be real numbers greater than or equal to 1. Prove that
\dfrac{a^3+2}{b^2-b+1}+\dfrac{b^3+2}{c^2-c+1}+\dfrac{c^3+2}{a^2-a+1} \geq 9.

Proposed by Titu Andreescu.

Solution:
By the AM-GM Inequality, we have
\dfrac{a^3+2}{b^2-b+1}+\dfrac{b^3+2}{c^2-c+1}+\dfrac{c^3+2}{a^2-a+1} \geq 3\sqrt[3]{\left(\dfrac{a^3+2}{a^2-a+1}\right)\left( \dfrac{b^3+2}{b^2-b+1}\right)\left(\dfrac{c^3+2}{c^2-c+1}\right)}.
Since x^3+2=(x-1)^3+3(x^2-x+1), we have \dfrac{x^3+2}{x^2-x+1}=\dfrac{(x-1)^3}{x^2-x+1}+3\geq 3 for all x \geq 1.
Therefore,
\dfrac{a^3+2}{b^2-b+1}+\dfrac{b^3+2}{c^2-c+1}+\dfrac{c^3+2}{a^2-a+1} \geq 9.

No comments:

Post a Comment