Processing math: 0%

Friday, October 3, 2014

Mathematical Reflections 2014, Issue 4 - Problem S307

Problem:
Let ABC be a triangle such that \angle ABC - \angle ACB = 60^{\circ}. Suppose that the length of the
altitude from A is \dfrac{1}{4}BC. Find \angle ABC.

 Proposed by Omer Cerrahoglu and Mircea Lascu.

Solution:
Let \alpha=\angle ABC and let H be the foot of the altitude from A. Observe that \alpha>60^{\circ}, so \tan \alpha>\sqrt{3}. We have \dfrac{AH}{BH}=\tan \alpha, \qquad \dfrac{AH}{CH}=\tan (\alpha-60^{\circ}). Since AH=\dfrac{1}{4}BC, then BC=BH+CH=\dfrac{1}{4 \tan \alpha}BC+\dfrac{1}{4 \tan (\alpha-60^{\circ})}BC, which gives \dfrac{1}{\tan \alpha}+\dfrac{1}{\tan (\alpha-60^{\circ})}=4. Since \dfrac{1}{\tan (\alpha)-60^{\circ}}=\dfrac{1+\tan 60^{\circ}\tan \alpha}{\tan \alpha-\tan 60^{\circ}}, setting x=\tan \alpha, we get \dfrac{1}{x}+\dfrac{1+\sqrt{3}x}{x-\sqrt{3}}=4 \iff (4-\sqrt{3})x^2-2(2\sqrt{3}+1)x+\sqrt{3}=0. As x>\sqrt{3}, then x=2+\sqrt{3}, i.e. \alpha=75^{\circ}

No comments:

Post a Comment