Processing math: 0%

Sunday, April 5, 2015

Mathematical Reflections 2015, Issue 1 - Problem U327

Problem:
Let (a_n)_{n \geq 0} be a sequence of real numbers with a_0=1 and a_{n+1}=\dfrac{a_n}{n^2a_n+a^2_n+1}.
Find the limit \displaystyle \lim_{n \to \infty} n^3 a_n.


Proposed by Khakimboy Egamberganov.

Solution:
Observe that a_{n+1}<\dfrac{a_n}{n^2a_n}=\dfrac{1}{n^2}, so \displaystyle \sum_{n=0}^{\infty} a_n converges by the Comparison Test. Let \sum_{n=0}^{\infty} a_n=c \in \mathbb{R}.
We have \dfrac{1}{a_{n+1}}=n^2+a_n+\dfrac{1}{a_n}. So, \begin{array}{rcl} \dfrac{1}{a_1}&=&0^2+a_0+\dfrac{1}{a_0} \\ \dfrac{1}{a_2}&=&1^2+a_1+\dfrac{1}{a_1} \\ \vdots & \vdots & \vdots \\ \dfrac{1}{a_n}&=&(n-1)^2+a_{n-1}+\dfrac{1}{a_{n-1}},\end{array} and summing the two columns, we get \dfrac{1}{a_n}=\dfrac{(n-1)n(2n-1)}{6}+\sum_{k=0}^{n-1} a_k+1.
Hence, \dfrac{1}{n^3a_n}=\dfrac{(n-1)n(2n-1)}{6n^3}+\dfrac{\sum_{k=0}^{n-1} a_k+1}{n^3}. Since \displaystyle \lim_{n \to \infty} \dfrac{\sum_{k=0}^{n-1} a_k+1}{n^3}=\lim_{n \to \infty} \dfrac{c+1}{n^3}=0, we get \lim_{n \to \infty} \dfrac{1}{n^3 a_n}=\lim_{n \to \infty} \dfrac{(n-1)n(2n-1)}{6n^3}=\dfrac{1}{3}, so \lim_{n \to \infty} n^3 a_n=3.

Mathematical Reflections 2015, Issue 1 - Problem U326

Problem:
Find \sum_{n=0}^\infty \dfrac{a_n+2}{a^2_n+a_n+1}, where a_0>1 and a_{n+1}=\dfrac{1}{3}(a^3_n+2) for all integers n \geq 0.

Proposed by Arkady Alt.

Solution:
Since a_0>1, then it can be proved by induction that a_n>1 for all n \in \mathbb{N}.
For all n \geq 0 we have \begin{array}{lll} \dfrac{a_n+2}{a^2_n+a_n+1}&=&\dfrac{(a_n+2)(a_n-1)}{a^3_n-1}\\ &=& \dfrac{(a_n+2)(a_n-1)}{3(a_{n+1}-1)}\\ &=&\dfrac{a^2_n+a_n+1-3}{3(a_{n+1}-1)}\\ &=&\dfrac{\frac{a^3_n-1}{a_n-1}-3}{3(a_{n+1}-1)} \\  &=& \dfrac{\frac{3(a_{n+1}-1)}{a_n-1}-3}{3(a_{n+1}-1)} \\ &=&\dfrac{a_{n+1}-a_n}{(a_n-1)(a_{n+1}-1)}\\&=&\dfrac{1}{a_n-1}-\dfrac{1}{a_{n+1}-1}  \end{array}
Therefore, \sum_{n=0}^\infty \dfrac{a_n+2}{a^2_n+a_n+1}=\dfrac{1}{a_0-1}.

Mathematical Reflections 2015, Issue 1 - Problem J325

Problem:
For positive real numbers a and b, define their \emph{perfect mean} to be half of the sum of their
arithmetic and geometric means. Find how many unordered pairs of integers (a,b) from the set \{1,2,\ldots,2015\} have their perfect mean a perfect square.

Proposed by Ivan Borsenco.

Solution:
We have \dfrac{\frac{a+b}{2}+\sqrt{ab}}{2}=n^2 \qquad n \in \mathbb{N}, i.e. \sqrt{a}+\sqrt{b}=2n, \qquad n \in \mathbb{N}. As a,b \in \{1,2,\ldots,2015\}, then a and b must be perfect squares and n \leq 44. Assume that a \leq b. If a is an odd perfect square, then b is an odd perfect square, and making a case by case analysis for a \in \{1,3^2,\ldots,43^2\} we get 22+21+\ldots+2+1=253 unordered pairs. Similarly, if a is an even perfect square, then b is an even perfect square and we get 22+21+\ldots+2+1=253 unordered pairs. So, there are 253+253=506 unordered pairs which satisfy the given conditions.