Processing math: 10%

Sunday, April 5, 2015

Mathematical Reflections 2015, Issue 1 - Problem U326

Problem:
Find \sum_{n=0}^\infty \dfrac{a_n+2}{a^2_n+a_n+1}, where a_0>1 and a_{n+1}=\dfrac{1}{3}(a^3_n+2) for all integers n \geq 0.

Proposed by Arkady Alt.

Solution:
Since a_0>1, then it can be proved by induction that a_n>1 for all n \in \mathbb{N}.
For all n \geq 0 we have \begin{array}{lll} \dfrac{a_n+2}{a^2_n+a_n+1}&=&\dfrac{(a_n+2)(a_n-1)}{a^3_n-1}\\ &=& \dfrac{(a_n+2)(a_n-1)}{3(a_{n+1}-1)}\\ &=&\dfrac{a^2_n+a_n+1-3}{3(a_{n+1}-1)}\\ &=&\dfrac{\frac{a^3_n-1}{a_n-1}-3}{3(a_{n+1}-1)} \\  &=& \dfrac{\frac{3(a_{n+1}-1)}{a_n-1}-3}{3(a_{n+1}-1)} \\ &=&\dfrac{a_{n+1}-a_n}{(a_n-1)(a_{n+1}-1)}\\&=&\dfrac{1}{a_n-1}-\dfrac{1}{a_{n+1}-1}  \end{array}
Therefore, \sum_{n=0}^\infty \dfrac{a_n+2}{a^2_n+a_n+1}=\dfrac{1}{a_0-1}.

No comments:

Post a Comment