Solve in positive real numbers the system of equations \dfrac{x^3}{4}+y^2+\dfrac{1}{z}=\dfrac{y^3}{4}+z^2+\dfrac{1}{x}=\dfrac{z^3}{4}+x^2+\dfrac{1}{y}=2.
Proposed by Titu Andreescu, University of Texas at Dallas
Solution:
Adding the three equations, we get \left(\dfrac{x^3}{4}+x^2+\dfrac{1}{x}-2\right)+\left(\dfrac{y^3}{4}+y^2+\dfrac{1}{y}-2\right)+\left(\dfrac{z^3}{4}+z^2+\dfrac{1}{z}-2\right)=0.
Let f(t)=\dfrac{t^3}{4}+t^2+\dfrac{1}{t}-2. We have
f(t)=\dfrac{t^4+4t^3-8t+4}{4t}=\dfrac{(t^2+2t-2)^2}{4t} \geq 0 for all t \in \mathbb{R}^+ and f(t)=0 if and only if t^2+2t-2=0, i.e. t=\sqrt{3}-1. It follows that f(x)+f(y)+f(z)=0 if and only if x=y=z=\sqrt{3}-1.
No comments:
Post a Comment