Processing math: 100%

Wednesday, June 8, 2016

Mathematical Reflections 2016, Issue 2 - Problem U370

Problem:
Evaluate \lim_{x \to 0} \dfrac{\sqrt{1+2x}\cdot\sqrt[3]{1+3x}\cdot\ldots\cdot\sqrt[n]{1+nx}-1}{x}.


Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

Solution:
Observe that for any k=2,\ldots,n and for any x such that |x|<1, we have \sqrt[k]{1+kx}=1+\dfrac{1}{k}kx+o(x^2)=1+x+o(x^2). Hence,
\begin{array}{lll}\sqrt{1+2x}\cdot\sqrt[3]{1+3x}\cdot\ldots\cdot\sqrt[n]{1+nx}-1&=&(1+x+o(x^2))^{n-1}-1\\&=&(1+(n-1)x+o(x^2))-1\\&=&(n-1)x+o(x^2). \end{array}
Therefore, \lim_{x \to 0} \dfrac{\sqrt{1+2x}\cdot\sqrt[3]{1+3x}\cdot\ldots\cdot\sqrt[n]{1+nx}-1}{x}=n-1.

No comments:

Post a Comment