Processing math: 5%

Tuesday, September 20, 2016

Mathematical Reflections 2016, Issue 3 - Problem J375

Problem:
Solve in real numbers the equation \sqrt[3]{x}+\sqrt[3]{y}=\dfrac{1}{2}+\sqrt{x+y+\dfrac{1}{4}}

Proposed by Adrian Andreescu, Dallas, TX, USA


Solution:
Let \sqrt[3]{x}=a and \sqrt[3]{y}=b. Then, x=a^3 and y=b^3 and the given equation becomes a+b-\dfrac{1}{2}=\sqrt{a^3+b^3+\dfrac{1}{4}}. Squaring both sides, we have a^2+b^2+2ab-a-b=a^3+b^3, i.e. (a+b)(a+b-1)=(a+b)(a^2-ab+b^2). If a+b=0, then x=-y, but substituting into the original equation, we get 0=1, contradiction. Then, a+b-1=a^2-ab+b^2, i.e. a^2-a(b+1)+b^2-b+1=0. Solving this equation for a, we obtain the discriminant \Delta_a=(b+1)^2-4(b^2-b+1)=-3(b-1)^2 \leq 0, so a real solutions exists if and only if b-1=0, i.e. b=1. Substituting this value, we get (a-1)^2=0, so a=1. We conclude that the given equation has only the real solution (x,y)=(1,1).

No comments:

Post a Comment