Solve in real numbers the system of equations
(x^2-y+1)(y^2-x+1)=2[(x^2-y)^2+(y^2-x)^2]=4.
Proposed by Alessandro Ventullo, Milan, Italy
Solution:
Set u=x^2-y and v=y^2-x. The given system can be rewritten as \begin{array}{rcl} u^2+v^2&=&2 \\ (u+1)(v+1)&=&4. \end{array}
Multiplying the second equation by 2 and adding to the first equation, we get (u+v)^2+2(u+v)-8=0, and solving for u+v, we get u+v=-4 or u+v=2. If u+v=-4, then uv=4-u-v-1=7. If u+v=2, then uv=4-u-v-1=1. We obtain the two systems of equations:
\begin{array}{rcl} u+v&=&-4 \\ uv&=&7, \end{array} \qquad \begin{array}{rcl} u+v&=&2 \\ uv&=&1. \end{array}
The first system gives no real solution. The second system gives u=v=1. We obtain the system of equations
\begin{array}{rcl} x^2-y&=&1 \\ y^2-x&=&1.\end{array} Subtracting side by side the two equations, we get (x^2-y^2)+(x-y)=0, i.e. (x-y)(x+y+1)=0. So, x=y or x=-1-y. Substituting these values, we obtain (x,y) \in \left\{\left(\dfrac{1+\sqrt{5}}{2},\dfrac{1+\sqrt{5}}{2}\right),\left(\dfrac{1-\sqrt{5}}{2},\dfrac{1-\sqrt{5}}{2}\right),(0,-1),(-1,0),\right\}.
Set u=x^2-y and v=y^2-x. The given system can be rewritten as \begin{array}{rcl} u^2+v^2&=&2 \\ (u+1)(v+1)&=&4. \end{array}
Multiplying the second equation by 2 and adding to the first equation, we get (u+v)^2+2(u+v)-8=0, and solving for u+v, we get u+v=-4 or u+v=2. If u+v=-4, then uv=4-u-v-1=7. If u+v=2, then uv=4-u-v-1=1. We obtain the two systems of equations:
\begin{array}{rcl} u+v&=&-4 \\ uv&=&7, \end{array} \qquad \begin{array}{rcl} u+v&=&2 \\ uv&=&1. \end{array}
The first system gives no real solution. The second system gives u=v=1. We obtain the system of equations
\begin{array}{rcl} x^2-y&=&1 \\ y^2-x&=&1.\end{array} Subtracting side by side the two equations, we get (x^2-y^2)+(x-y)=0, i.e. (x-y)(x+y+1)=0. So, x=y or x=-1-y. Substituting these values, we obtain (x,y) \in \left\{\left(\dfrac{1+\sqrt{5}}{2},\dfrac{1+\sqrt{5}}{2}\right),\left(\dfrac{1-\sqrt{5}}{2},\dfrac{1-\sqrt{5}}{2}\right),(0,-1),(-1,0),\right\}.
No comments:
Post a Comment