Prove that for all real numbers x,y,z at least one of the numbers
2^{3x-y}+2^{3x-z}-2^{y+z+1} 2^{3y-z}+2^{3y-x}-2^{z+x+1} 2^{3z-x}+2^{3z-y}-2^{x+y+1}
is nonnegative.
Proposed by Adrian Andreescu, Dallas, Texas, USA
Solution:
Let a=2^x, b=2^y, c=2^z. Adding the three given numbers, we get
\begin{array}{lll} S&=&\left(\dfrac{a^3}{b}+\dfrac{a^3}{c}-2bc\right)+\left(\dfrac{b^3}{c}+\dfrac{b^3}{a}-2ca\right)+\left(\dfrac{c^3}{a}+\dfrac{c^3}{b}-2ab\right)\\&=&\left(\dfrac{a^3}{b}+\dfrac{b^3}{a}-2ab\right)+\left(\dfrac{b^3}{c}+\dfrac{c^3}{b}-2bc\right)+\left(\dfrac{c^3}{a}+\dfrac{a^3}{c}-2ca\right). \end{array}
By the AM-GM Inequality, we get
\dfrac{a^3}{b}+\dfrac{b^3}{a} \geq 2ab, \qquad \dfrac{b^3}{c}+\dfrac{c^3}{b} \geq 2bc, \qquad \dfrac{c^3}{a}+\dfrac{a^3}{c} \geq 2ca.
So, S \geq 0 and we conclude that at least one of the three given numbers is nonnegative.
No comments:
Post a Comment