Let E be a vectorial space with norms \left\|\cdot\right\|_1 and \left\|\cdot\right\|_2. Decide if \min(\left\|\cdot\right\|_1,\left\|\cdot\right\|_2) is a norm.
Proposed by Roberto Bosch Cabrera.
Solution:
The answer is no. Let E=\mathbb{R}^2, \left\|\underline{x} \right\|_1:=\sqrt{x^2_1+x^2_2}, \left\|\underline{x} \right\|_2:=|x_1|+|x_1-x_2|. Simple computations show that \left\|\cdot\right\|_1 and \left\|\cdot\right\|_2 are norms on \mathbb{R}^2. Put \underline{x}=(0,0), \underline{y}=(1,0), \underline{z}=(2,1). Then
\min(\left\|\underline{x}-\underline{y}\right\|_1,\left\|\underline{x}-\underline{y}\right\|_2) + \min(\left\|\underline{y}-\underline{z}\right\|_1,\left\|\underline{y}-\underline{z}\right\|_2) = \min(1,2) + \min(\sqrt{2},1)=2,
but \min(\left\|\underline{x}-\underline{z}\right\|_1,\left\|\underline{x}-\underline{z}\right\|_2) = \min(\sqrt{5},3) = \sqrt{5},
so \min(\left\|\underline{x}-\underline{y}\right\|_1,\left\|\underline{x}-\underline{y}\right\|_2) + \min(\left\|\underline{y}-\underline{z}\right\|_1,\left\|\underline{y}-\underline{z}\right\|_2) < \min(\left\|\underline{x}-\underline{z}\right\|_1,\left\|\underline{x}-\underline{z}\right\|_2).
No comments:
Post a Comment