Let f_0(i)=1 for all i \in \mathbb{N} and let f_k(n)=\displaystyle \sum_{i=1}^n f_{k-1}(i) for k \geq 1. Prove that
\sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} f_j(n-2j)=F_n, where F_n is the n-th Fibonacci number.
Proposed by Ivan Borsenco.
Solution:
First we show that if n,k \geq 1, then
\begin{equation}\label{identity1} \sum_{i=k}^{n} {i \choose k} = {n+1 \choose k+1}. \qquad (1) \end{equation}
By Pascal's Identity,
\begin{array}{lll} \displaystyle \sum_{i=k}^{n} {i \choose k} & = & \displaystyle {k \choose k+1} + \sum_{i=k}^{n} {i \choose k}\\ & = & \displaystyle {k+1 \choose k+1} + \sum_{i=k+1}^{n} {i \choose k} \\ & = & \displaystyle {k+2 \choose k+1} + \sum_{i=k+2}^{n} {i \choose k} \\ & = & \displaystyle \vdots \\ & = & \displaystyle {n+1 \choose k+1}. \end{array}
Now, we prove by induction on k \geq 1 that f_k(n)=\displaystyle {n+k-1 \choose k} for any n \in \mathbb{N}.
For k=1 we have f_1(n)=\displaystyle \sum_{i=1}^n f_{0}(i)=n, so the equality holds. Suppose that the equality is true for k. Then
f_{k+1}(n)=\sum_{i=1}^n f_{k}(i)=\sum_{i=1}^n {i+k-1 \choose k} = {n+k \choose k+1} by (1). Now, it is clear that \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} f_j(n-2j) = \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} {n-j-1 \choose j}. So, we only have to prove that \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} {n-j-1 \choose j}=F_n, where F_n is the n-th Fibonacci number. This can be done by induction on n. For n=1 and n=2 is obvious. Suppose that the equality holds for every m such that 1 \leq m \leq n. Since \lfloor \frac{n-1}{2} \rfloor + 1 = \lfloor \frac{n+1}{2} \rfloor, we have
\begin{array}{lll} F_{n-1}+F_{n} & = & \displaystyle \sum_{j=0}^{\lfloor \frac{n-1}{2} \rfloor} {n-j-2 \choose j} + \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} {n-j-1 \choose j} \\ & = & \displaystyle {n-1 \choose 0} + \sum_{j=1}^{\lfloor \frac{n+1}{2} \rfloor}\left[{n-j-1 \choose j-1} + {n-j-1 \choose j}\right] \\ & = & \displaystyle {n \choose 0} + \sum_{j=1}^{\lfloor \frac{n+1}{2} \rfloor} {n-j \choose j} \\ & = & \displaystyle \sum_{j=0}^{\lfloor \frac{n+1}{2} \rfloor} {n-j \choose j} = F_{n+1}, \end{array} as we wanted to prove.
No comments:
Post a Comment