Let a,b,c be positive real numbers such that a^2 \geq b^2+bc+c^2. Prove that
a > \min(b,c) + \dfrac{|b^2-c^2|}{a}.
Proposed by Titu Andreescu.
Solution:
Without loss of generality, suppose that \min(b,c)=c. If a \geq b+c, then
a^2-ac \geq ab > (b+c)(b-c)=b^2-c^2. If a<b+c, then
a^2-ac > a^2-(b+c)c \geq b^2 > b^2-c^2. So, for any a,b,c satisfying the required conditions, we have a > \min(b,c) + \dfrac{|b^2-c^2|}{a}.
No comments:
Post a Comment