Let $a,b,c$ real numbers greater than $2$ such that $$\dfrac{7-2a}{3a-6}+\dfrac{7-2b}{3b-6}+\dfrac{7-2c}{3c-6}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}.$$ Prove that
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \leq 1.$
Proposed by Titu Andreescu.
Solution:
Since $$\dfrac{7-2a}{3a-6}+\dfrac{7-2b}{3b-6}+\dfrac{7-2c}{3c-6}=-\dfrac{2}{3}+\dfrac{1}{a-2}-\dfrac{2}{3}+\dfrac{1}{b-2}-\dfrac{2}{3}+\dfrac{1}{c-2},$$ the given condition can be rewritten as $$\dfrac{1}{a(a-2)}+\dfrac{1}{b(b-2)}+\dfrac{1}{c(c-2)}=1.$$
Suppose without loss of generality that $a \leq b \leq c$. If $$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} > 1$$ then $\dfrac{1}{a-2}+\dfrac{1}{b-2}+\dfrac{1}{c-2} > 3$ and by Chebychev's Inequality,
$$3 < \left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(\dfrac{1}{a-2}+\dfrac{1}{b-2}+\dfrac{1}{c-2}\right) \leq 3,$$ contradiction.