Processing math: 0%

Tuesday, June 12, 2012

Mathematical Reflections 2012, Issue 2 - Problem J227

Problem:
For a positive integer N let r(N) be the number obtained by reversing the digits of N.
Find all 3-digit numbers N such that r^2(N)-N^2 is the cube of a positive integer.

Proposed by Titu Andreescu.

Solution:
Let N=100a+10b+c and r(N)=100c+10b+c with 0 \leq a,b,c \leq 9, ac \neq 0. Then
r^2(N)-N^2=(100c+10b+a)^2-(100a+10b+c)^2=99(c-a)[101(c+a)+20b].
Since r^2(N)-N^2 > 0, it must be c > a. If r^2(N)-N^2 is a cube, as c-a \leq 8, then 101(c+a)+20b \equiv 0 \pmod{121}, i.e. b-(a+c) \equiv 0 \pmod{121}. Since -17 \leq b-(a+c) \leq 6, then b=a+c. So,
r^2(N)-N^2=11^3\cdot3^2(c-a)(c+a).
If c-a=3 then c+a=2a+3 and 5 \leq 2a+3 \leq 19 must be an odd cube, contradiction. Likewise, c-a=6 yields c+a=2(a+3), so that a+3=2k^3 where k is a positive integer, contradiction. So, c+a=3,6,9.

(i) If c+a=3, then a=1, c=2 and it's easy to see that r^2(N)-N^2=11^3\cdot3^3 = 33^3.
(ii) If c+a=6, then c-a=2(3-a) and r^2(N)-N^2=11^3\cdot3^3\cdot2^2(3-a), so a=1 and c=5.
(iii) If c+a=9, then c-a=9-2a and r^2(N)-N^2=11^3\cdot3^4 (9-2a), but 9-2a=9k^3  has no positive integer solution.

In conclusion, all the 3-digit numbers which satisfy the required conditions are 132 and 165.

No comments:

Post a Comment