Let a, b, c be nonnegative real numbers such that a+b+c=1. Prove that ab(a^2+b^2)+bc(b^2+c^2)+ca(c^2+a^2)+abc \leq \dfrac{1}{8}.
Proposed by Titu Andreescu.
Solution:
Using the fact that abc=abc(a+b+c) and factorizing we have
ab(a^2+b^2)+bc(b^2+c^2)+ca(c^2+a^2)+abc=(a^2+b^2+c^2)(ab+bc+ca).
By AM-GM Inequality, a^2+b^2+c^2+2(ab+bc+ca)=1 \geq 2\sqrt{2(a^2+b^2+c^2)(ab+bc+ca)},
then (a^2+b^2+c^2)(ab+bc+ca) \leq \dfrac{1}{8}.
ab(a^2+b^2)+bc(b^2+c^2)+ca(c^2+a^2)+abc=(a^2+b^2+c^2)(ab+bc+ca).
By AM-GM Inequality, a^2+b^2+c^2+2(ab+bc+ca)=1 \geq 2\sqrt{2(a^2+b^2+c^2)(ab+bc+ca)},
then (a^2+b^2+c^2)(ab+bc+ca) \leq \dfrac{1}{8}.
No comments:
Post a Comment