Loading [MathJax]/extensions/TeX/mathchoice.js

Sunday, October 14, 2012

KöMaL (Metresis) 1894, Problem 8

Problem:
If 2 \cos \vartheta = u+\dfrac{1}{u}, prove that 2 \cos n \vartheta = u^n+\dfrac{1}{u^n} for every positive integer n.

Solution 1:
We prove the statement by induction on n \geq 2. If n=2 we have 2 \cos 2\vartheta =4 \cos^2 \vartheta - 2=\left(u+\dfrac{1}{u} \right)^2 - 2=u^2+\dfrac{1}{u^2}. Assume that the statement is true for every 2 \leq k \leq n. Then, \begin{eqnarray*} 2 \cos (n+1)\vartheta &= &2[2\cos n \vartheta \cos \vartheta - \cos (n-1)\vartheta]\\ &= & 2\left[\left(u^n+\dfrac{1}{u^n}\right)\dfrac{1}{2}\left(u+\dfrac{1}{u}\right)-\dfrac{1}{2}\left(u^{n-1}+\dfrac{1}{u^{n-1}}\right)\right] \\ & = & u^{n+1}+\dfrac{1}{u^{n+1}}, \end{eqnarray*} and the statement follows.

Solution 2:
From the given equality, we obtain u^2-(2\cos \vartheta) u + 1=0, and solving this equation in u we get u=\cos \vartheta \pm i \sin \vartheta=e^{\pm i \vartheta}. Then, for every positive integer n
2 \cos n \vartheta = e^{\pm in\vartheta}+e^{\mp in \vartheta}=u^n+u^{-n}=u^n+\dfrac{1}{u^n} as we wanted to prove.

KöMaL (Metresis) 1894, Problem 2

Problem:
Find all positive integers N divisible only by 2 and by 3 such that N^2 has three times the number of divisors of N.

Solution:
Let N=2^a 3^b, where a,b \in \mathbb{N}^*. Then N^2 = 2^{2a}3^{2b}. So, it must be 3(a+1)(b+1)=(2a+1)(2b+1) \iff ab-a-b-2=0 \iff (a-1)(b-1)=3. Since a-1 \geq 0 and b-1 \geq 0, we obtain \left\{ \begin{array}{rcl} a-1 & = & 1 \\ b-1 & = & 3 \end{array} \right. \qquad \textrm{or} \qquad \left\{ \begin{array}{rcl} a-1 & = & 3 \\ b-1 & = & 1 \end{array} \right. i.e. a=2, b=4 or a=4, b=2. Then all the positive integers required are N_1=2^2 3^4=324 and N_2=2^4 3^2=144.

KöMaL (Metresis) 1894, Problem 1

Problem: 
Find all the two digit numbers \overline{ab} such that \overline{ababab}+1 is a perfect cube.

Solution:
Let x=\overline{ab} be the two digit number. Then, 101010x+1=n^3, for some positive integer n. Clearly, 10^6 \leq n^3 < 10^7, i.e. 100 \leq n \leq 215. Moreover,
101010x=n^3-1. Since 101010=30\cdot3367, it's easy to see that n^3-1 \equiv 0 \pmod{30} if and only if n \equiv 1 \pmod{30}, i.e. n-1 is divisible by 30. So n \in \{121,151,181,211\} and an easy check shows that only n=211 works. In this case, x=93.