Problem:
If 2 \cos \vartheta = u+\dfrac{1}{u}, prove that 2 \cos n \vartheta = u^n+\dfrac{1}{u^n} for every positive integer n.
Solution 1:
We prove the statement by induction on n \geq 2. If n=2 we have 2 \cos 2\vartheta =4 \cos^2 \vartheta - 2=\left(u+\dfrac{1}{u} \right)^2 - 2=u^2+\dfrac{1}{u^2}. Assume that the statement is true for every 2 \leq k \leq n. Then, \begin{eqnarray*} 2 \cos (n+1)\vartheta &= &2[2\cos n \vartheta \cos \vartheta - \cos (n-1)\vartheta]\\ &= & 2\left[\left(u^n+\dfrac{1}{u^n}\right)\dfrac{1}{2}\left(u+\dfrac{1}{u}\right)-\dfrac{1}{2}\left(u^{n-1}+\dfrac{1}{u^{n-1}}\right)\right] \\ & = & u^{n+1}+\dfrac{1}{u^{n+1}}, \end{eqnarray*} and the statement follows.
Solution 2:
From the given equality, we obtain u^2-(2\cos \vartheta) u + 1=0, and solving this equation in u we get u=\cos \vartheta \pm i \sin \vartheta=e^{\pm i \vartheta}. Then, for every positive integer n
2 \cos n \vartheta = e^{\pm in\vartheta}+e^{\mp in \vartheta}=u^n+u^{-n}=u^n+\dfrac{1}{u^n} as we wanted to prove.
No comments:
Post a Comment