Processing math: 100%

Wednesday, May 28, 2014

Mathematical Reflections 2014, Issue 2 - Problem U297

Problem:
Let a_0 = 0, a_1 = 2, and a_{n+1}=\sqrt{2-\dfrac{a_{n-1}}{a_n}} for n \geq 0. Find \displaystyle \lim_{n \to \infty} 2^n a_n.

Proposed by Titu Andreescu.

Solution:
We will show by induction on n that a_n=2 \sin \dfrac{\pi}{2^n} for all n \in \mathbb{N}. If n=0, it's obvious. Suppose that a_n=2 \sin \dfrac{\pi}{2^n} for some n \in \mathbb{N}. Then, a_{n+1}=\sqrt{2-\dfrac{2\sin (\pi/2^{n-1})}{2\sin (\pi/2^n)}}=\sqrt{2-\dfrac{4\sin (\pi/2^n)\cos (\pi/2^n)}{2\sin (\pi/2^n)}}=\sqrt{2-2\cos \dfrac{\pi}{2^n}}=2\sin \dfrac{\pi}{2^{n+1}}.

Therefore, 2^n a_n=2^{n+1}\sin\dfrac{\pi}{2^n}=2^{n+1}\left(\dfrac{\pi}{2^n}+o((\pi/2^n)^2)\right),
which implies \lim_{n \to \infty} 2^n a_n=2\pi.

No comments:

Post a Comment