Let a,b,c be positive integers such that (a-b)^2+(b-c)^2+(c-a)^2=6abc. Prove that a^3+b^3+c^3+1 is not divisible by a+b+c+1.
Proposed by Mihaly Bencze.
Solution:
Clearly (a-b)^2+(b-c)^2+(c-a)^2=2(a^2+b^2+c^2-ab-bc-ac) which implies a^2+b^2+c^2-ab-bc-ac=3abc.
Now, using the identity a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac) we obtain that a^3+b^3+c^3-3abc=3abc(a+b+c), or a^3+b^3+c^3=3abc(a+b+c+1) which means that a+b+c+1 divides a^3+b^3+c^3. If a+b+c+1 divides a^3+b^3+c^3+1, then a+b+c+1 divides (a^3+b^3+c^3+1)-(a^3+b^3+c^3)=1, which is impossible, since a+b+c+1>1. Thus, a^3+b^3+c^3+1 is not divisible by a+b+c+1.
No comments:
Post a Comment