Processing math: 100%

Friday, April 8, 2016

Mathematical Reflections 2016, Issue 1 - Problem U365

Problem:
Let n be a positive integer. Evaluate

(a) \displaystyle \int_{0}^n e^{\lfloor x \rfloor} \ dx

(b) \displaystyle \int_{0}^n \lfloor e^x \rfloor \ dx.

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

Solution:
(a) If k \leq x < k+1, where k \in \mathbb{Z}, then \lfloor x \rfloor =k. So, \displaystyle \int_{0}^n e^{\lfloor x \rfloor} \ dx=\sum_{k=0}^{n-1} \int_{k}^{k+1} e^{\lfloor x \rfloor} dx=\sum_{k=0}^{n-1} e^k=\dfrac{e^n-1}{e-1}.

(b) If k \leq e^x < k+1, where k \in \mathbb{N}^*, then \lfloor e^x \rfloor=k. This implies that if \log k \leq x < \log (k+1), then \lfloor e^x \rfloor=k. Let m be the greatest natural number such that \log m \leq n.
So, \renewcommand{\arraystretch}{2}\begin{array}{lll}\displaystyle \int_{0}^n \lfloor e^x \rfloor \ dx&=& \displaystyle \sum_{k=1}^{m-1} \int_{\log k}^{\log k+1} k \ dx+\int_{\log m}^n m \ dx\\&=&\displaystyle \sum_{k=1}^{m-1} [(k+1)\log(k+1)-k\log k]-\sum_{k=1}^{m-1} \log(k+1)+m(n-\log m)\\&=&\displaystyle m\log m-\log m!+mn-m\log m\\&=&mn-\log m!\\&=&\lfloor e^n \rfloor n-\log (\lfloor e^n \rfloor!). \end{array}

No comments:

Post a Comment