Let 0 < a,b,c,d \leq 1. Prove that \dfrac{1}{a+b+c+d} \geq \dfrac{1}{4}+\dfrac{64}{27}(1-a)(1-b)(1-c)(1-d).
Proposed by An Zhen-ping, Xianyang Normal University, China
Solution:
The given inequality can be written as \dfrac{4-a-b-c-d}{4(a+b+c+d)} \geq \dfrac{64}{27}(1-a)(1-b)(1-c)(1-d).
By the AM-GM Inequality, we have \dfrac{64}{27}(1-a)(1-b)(1-c)(1-d) \leq \dfrac{64}{27}\left(\dfrac{4-a-b-c-d}{4}\right)^4=\dfrac{1}{4}\cdot\dfrac{1}{27}(4-a-b-c-d)^4.
So, we have to prove that \dfrac{1}{4}\cdot\dfrac{1}{27}(4-a-b-c-d)^4 \leq \dfrac{4-a-b-c-d}{4(a+b+c+d)},
i.e. \dfrac{1}{27}(4-a-b-c-d)^3 \leq \dfrac{1}{a+b+c+d}.
Let x=a+b+c+d. We have to prove that x(4-x)^3 \leq 27 for any x \in (0,4], but this is true because 27-x(4-x)^3=(x-1)^2(x^2-10x+27) \geq 0
for all x \in (0,4]. The equality holds if and only if x=1 and 1-a=1-b=1-c=1-d, i.e. if and only if a=b=c=d=\dfrac{1}{4}.
No comments:
Post a Comment