Solve in real numbers the equation \dfrac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{\sqrt[3]{1+x}+\sqrt[3]{1-x}}=\dfrac{x(x^2+3)}{3x^2+1}.
Proposed by Alessandro Ventullo, Milan, Italy
Solution:
Let f(x)=\dfrac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{\sqrt[3]{1+x}+\sqrt[3]{1-x}}. An easy check shows that f is a one-to-one correspondence on \mathbb{R}. Let us prove that f^{-1}(x)=\dfrac{x(x^2+3)}{3x^2+1}. Indeed, let us solve with respect to x the equation y=f(x). We have \dfrac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{\sqrt[3]{1+x}+\sqrt[3]{1-x}} = y.
If y=1, we have 1-x=0, i.e. x=1. Assume that y \neq 1. Set u=\sqrt[3]{1+x} and v=\sqrt[3]{1-x}. Hence, \dfrac{u-v}{u+v}=y \implies u=\dfrac{v(y+1)}{1-y}.
Since u^3+v^3=2, then v^3\dfrac{(y+1)^3}{(1-y)^3}+v^3=2 \implies v^3=\dfrac{(1-y)^3}{3y^2+1}.
Therefore, 1-x=\dfrac{(1-y)^3}{3y^2+1}, which gives x=\dfrac{y(y^2+3)}{3y^2+1}, so f^{-1}(x)=\dfrac{x(x^2+3)}{3x^2+1}. It follows that the real solutions to this equation are on the intersection between one of the two functions and the line g(x)=x. Let us take f^{-1}(x) for simplicity. Then, it must be \dfrac{x(x^2+3)}{3x^2+1}=x.
Clearly, x=0 is a solution. If x \neq 0, then x^2+3=1+3x^2, which gives x=\pm 1. So, x \in \{-1,0,1\}.
No comments:
Post a Comment