Let a,b,c be positive numbers such that abc=1. Prove that \dfrac{a^2}{\sqrt{1+a}}+\dfrac{b^2}{\sqrt{1+b}}+\dfrac{c^2}{\sqrt{1+c}} \geq 2.
Proposed by Constantinos Metaxas, Athens, Greece
Solution:
We prove the stronger inequality \dfrac{a^2}{\sqrt{1+a}}+\dfrac{b^2}{\sqrt{1+b}}+\dfrac{c^2}{\sqrt{1+c}} \geq \dfrac{3}{\sqrt{2}}.
Let f(x)=\dfrac{x^2}{\sqrt{1+x}}. Since f''(x)=\dfrac{3x^2+8x+8}{4(x+1)^2\sqrt{x+1}}, then f''(x)>0 for all x>0, so f is convex on (0,+\infty). By Jensen's Inequality, we have
f\left(\dfrac{a+b+c}{3}\right) \leq \dfrac{f(a)+f(b)+f(c)}{3}, i.e.
\dfrac{a^2}{\sqrt{1+a}}+\dfrac{b^2}{\sqrt{1+b}}+\dfrac{c^2}{\sqrt{1+c}} \geq 3\cdot \dfrac{\left(\frac{a+b+c}{3}\right)^2}{\sqrt{1+\frac{a+b+c}{3}}}=\dfrac{(a+b+c)^2}{\sqrt{9+3(a+b+c)}}.
By the AM-GM Inequality, we have a+b+c \geq 3\sqrt[3]{abc}=3. Set x=a+b+c. Observe that the function g(x)=\dfrac{x^2}{\sqrt{9+3x}} is increasing on [3,+\infty), so g(x) \geq g(3)=\dfrac{3}{\sqrt{2}} and the conclusion follows.
No comments:
Post a Comment