Wednesday, May 10, 2017

Mathematical Reflections 2016, Issue 6 - Problem U395

Problem:
Evaluate $\displaystyle \int \dfrac{x^2+6}{(x \cos x-3\sin x)^2} \ dx$.

Proposed by Abdelouahed Hamdi, Doha, Qatar


Solution:Observe that $$\begin{array}{lll} \dfrac{x^2+6}{(x \cos x-3\sin x)^2}&=&\dfrac{x^2(\cos^2 x +\sin^2 x)+6(\cos^2 x + \sin^2 x)+5 x \sin x \cos x - 5x \sin x \cos x}{(x \cos x-3\sin x)^2} \\ &=& \dfrac{(x \cos x-2\sin x)(x \cos x-3 \sin x)+(x \sin x+3 \cos x)(x \sin x+2\cos x)}{(x\cos x-3\sin x)^2}\\&=& \dfrac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2} \\ &=&\left(\dfrac{f(x)}{g(x)}\right)', \end{array}$$ where $f(x)=x\sin x+3\cos x$ and $g(x)=x \cos x -3\sin x$. So, $$\int \dfrac{x^2+6}{(x \cos x-3\sin x)^2} \ dx=\dfrac{x\sin x+3\cos x}{x \cos x-3\sin x}+C.$$

Mathematical Reflections 2016, Issue 6 - Problem U391

Problem:
Find all positive integers $n$ such that $\varphi^3(n) \leq n^2$.

Proposed by Alessandro Ventullo, Milan, Italy

Solution:
Clearly $n=1$ satisfies the condition. Let $n>1$ and let $n=\prod_{j=1}^m p_j^{k_j}$, where $p_j$ is the $j$-th prime and $k_j \in \mathbb{N}$ for $j=1,2,\ldots,m$. Since $f(n)=n^2$ and $\varphi(n)$ are multiplicative functions, then the given relation becomes $$\prod_{j=1}^m \varphi^3(p_j^{k_j}) \leq \prod_{j=1}^m p_j^{2k_j}.$$ We use the following Lemma.


Lemma.
Let $p$ be a prime number and let $k$ be a positive integer.

    (a) If $k=0$, then $\varphi^3(p^k)=p^{2k}$.
    (b) If $p \geq 5$, then
    $$\varphi^3(p^k)>\dfrac{9}{4}p^{2k} \qquad \forall k \in \mathbb{N}^*. \qquad (1) $$
    (c) If $p \geq 7$, then $$\varphi^3(p^k)>4p^{2k} \qquad \forall k \in \mathbb{N}^*. \qquad (2) $$
    (d) If $p \geq 11$, then  $$ \varphi^3(p^k)>8p^{2k} \qquad \forall k \in \mathbb{N}^*.  \qquad (3) $$


Proof. It's a simple computation.


From the inequality (1) in the Lemma we must consider only the primes $p_1=2$ and $p_2=3$.
If $k_1>3$, then $$\varphi^3(2^{k_1})=(2^{k_1}-2^{k_1-1})^3=2^{3(k_1-1)} > 2^{2k_1}$$ and if $k_2>1$, then $$\varphi^3(3^{k_2})=(3^{k_2}-3^{k_2-1})^3=3^{3(k_2-1)}\cdot8 > 3^{2k_2}.$$ So, there are no solutions if $k_1=k_2=0$ and $k_j>0$ for some $j>2$ or $k_1>3$ and $k_2>1$. So, $k_1 \leq 3$ or $k_2 \leq 1$.
\begin{description}
(a) If $k_1=0$, then $n=\prod_{j=2}^m p_j^{k_j}$. As before, we conclude immediately that there are solutions only if $k_2 \leq 1$ and $k_j=0$ for all $j=1,2,\ldots,m$. So, $n=3$.

(b) If $k_1=1$, then $n=2a$, where $a$ is an odd number. Hence, $$\varphi^3(n)=\varphi^3(2a)=\varphi^3(2)\varphi^3(a)=\varphi^3(a).$$ We have to find $a$ odd such that $$\varphi^3(a) \leq 4a^2.$$ From the inequality (2) in the Lemma we must consider only the primes $p_2=3$ and $p_3=5$. If $k_2>2$, then $$\varphi^3(3^{k_2})=3^{3(k_2-1)}\cdot2^3>4\cdot3^{2k_2}$$ and if $k_3>1$, then $$\varphi^3(5^{k_3})=5^{3(k_3-1)}\cdot4^3>4\cdot5^{2k_3}$$ So, there are no solutions for $a$ if $k_2=k_3=0$ and $k_j>0$ for some $j>3$ or $k_2>2$ and $k_3>1$. It follows that $k_2 \leq 2$ or $k_3 \leq 1$.

  (i) If $k_2=0$, then we have a solution if $k_3 \leq 1$, so $a \in \{1,5\}$, which gives $n \in \{2,10\}$.

  (ii) If $k_2=1$, then $a=3b$, where $b$ is a natural number nondivisible by $2$ and $3$. Hence, $n=6b$ and $$\varphi^3(n)=\varphi^3(6b)=\varphi^3(6)\varphi^3(b)=8\varphi^3(b).$$ We have to find $b$ nondivisible by $2$ and $3$ such that $8\varphi^3(b) \leq 36b^2$, i.e. $$\varphi^3(b) \leq \dfrac{9}{2}b^2.$$ From the inequality (3) in the Lemma we must consider only the primes $p_3=5$ and $p_4=7$. If $k_3>1$, then $$\varphi^3(5^{k_3})=5^{3(k_3-1)}\cdot4^3>\dfrac{9}{2}\cdot5^{2k_3}$$ and if $k_4>1$, then $$\varphi^3(7^{k_4})=7^{3(k_4-1)}\cdot6^3>\dfrac{9}{2}\cdot7^{2k_4}$$ So, there are no solutions for $b$ if $k_3=k_4=0$ and $k_j>0$ for some $j>4$ or $k_3>1$ and $k_4>1$. It follows that $k_3 \leq 1$ or $k_4 \leq 1$. If $k_3=0$, then we have a solution if $k_4 \leq 1$, so $b \in \{1,7\}$, which gives $n \in \{6,42\}$. If $k_3=1$, then $b=5c$, where $c$ is a natural number nondivisible by $2,3,5$. Hence, $n=30c$ and $$\varphi^3(n)=\varphi^3(30c)=\varphi^3(30)\varphi^3(c)=512\varphi^3(c).$$ We have to find $c$ nondivisible by $2,3,5$ such that $512\varphi^3(c) \leq 900c^2$, i.e. $$\varphi^3(c) \leq \dfrac{225}{128}c^2.$$ From the inequality (2) in the Lemma we have no primes for $c$. So, $c=1$ and $n=30$.

  (iii) If $k_2=2$, then $a=9b$, where $b$ is a natural number nondivisible by $2$ and $3$. Hence, $n=18b$ and $$\varphi^3(n)=\varphi^3(18b)=\varphi^3(18)\varphi^3(b)=216\varphi^3(b).$$ We have to find $b$ nondivisible by $2$ and $3$ such that $216\varphi^3(b) \leq 324b^2$, i.e. $$\varphi^3(b) \leq \dfrac{3}{2}b^2.$$ From the inequality (1) in the Lemma we have no primes for $b$. So, $b=1$ and $n=18$.

  (iv) If $k_3=0$, then we have a solution if $k_2 \leq 2$, so $a \in \{1,3,9\}$, which gives $n \in \{2,6,18\}$.

  (v) If $k_3=1$, then $a=5b$, where $b$ is a natural number nondivisible by $2$ and $5$. Hence, $n=10b$ and $$\varphi^3(n)=\varphi^3(10b)=\varphi^3(10)\varphi^3(b)=64\varphi^3(b).$$ We have to find $b$ nondivisible by $2$ and $5$ such that $64\varphi^3(b) \leq 100b^2$, i.e. $$\varphi^3(b) \leq \dfrac{25}{16}b^2.$$ From the inequality (2) in the Lemma we must consider only the prime $p_2=3$. If $k_2>1$, then $$\varphi^3(3^{k_2})=3^{3(k_2-1)}\cdot2^3>\dfrac{25}{16}\cdot3^{2k_2}.$$ So, there are no solutions for $b$ if $k_2=0$ and $k_j>0$ for some $j>3$ or $k_2>1$. It follows that $k_2 \leq 1$. If $k_2=0$, then $b=1$, which gives $n=10$. If $k_2=1$, then $b=3c$, where $c$ is a natural number nondivisible by $2,3,5$. Hence, $n=30c$ and we conclude as in point (ii).

(c) If $k_1=2$, then $n=4a$, where $a$ is an odd number. Hence, $$\varphi^3(n)=\varphi^3(4a)=\varphi^3(4)\varphi^3(a)=8\varphi^3(a).$$ We have to find $a$ odd such that $8\varphi^3(a) \leq 16a^2$, i.e. $$\varphi^3(a) \leq 2a^2.$$ From the inequality (1) in the Lemma we must consider only the prime $p_2=3$.  If $k_2>1$, then $$\varphi^3(3^{k_2})=3^{3(k_2-1)}\cdot2^3>2\cdot3^{2k_3}.$$ So, there are no solutions for $a$ if $k_2=0$ and $k_j>0$ for some $j>2$ or $k_2>1$. It follows that $k_2 \leq 1$. If $k_2=0$, then $a=1$ and $n=4$. If $k_2=1$, then $a=3b$, where $b$ is a natural number nondivisible by $2$ and $3$. Hence, $n=12b$ and $$\varphi^3(n)=\varphi^3(12b)=\varphi^3(12)\varphi^3(b)=64\varphi^3(b).$$ We have to find $b$ nondivisible by $2$ and $3$ such that $64\varphi^3(b) \leq 144b^2$, i.e. $$\varphi^3(b) \leq \dfrac{9}{4}b^2.$$ From the inequality (1) in the Lemma we have no primes for $b$. So, $b=1$ and $n=12$.

(d) If $k_1=3$, then $n=8a$, where $a$ is an odd number. Hence, $$\varphi^3(n)=\varphi^3(8a)=\varphi^3(8)\varphi^3(a)=64\varphi^3(a).$$ We have to find $a$ odd such that $64\varphi^3(a) \leq 64a^2$, i.e. $$\varphi^3(a) \leq a^2.$$ We know that this inequality has a solution if $k_2 \leq 1$, so $a \in \{1,3\}$, which gives $n \in \{8,24\}$.

(e) If $k_2=0$, then $n=\prod_{\substack{j=1 \\ j \neq 2}}^m p_j^{k_j}$. As before, we conclude immediately that there are solutions only if $k_1 \leq 3$ and $k_j=0$ for all $j=1,2,\ldots,m$. So, $n \in \{2,4,8\}$.

(f) If $k_2=1$, then $n=3a$, where $a$ is a natural number nondivisible by $3$. Hence, $$\varphi^3(n)=\varphi^3(3a)=\varphi^3(3)\varphi^3(a)=8\varphi^3(a).$$ We have to find $a$ nondivisible by $3$ such that $8\varphi^3(a) \leq 9a^2$, i.e. $$\varphi^3(a) \leq \dfrac{9}{8}a^2.$$ From the inequality (1) in the Lemma we must consider only the prime $p_1=2$. If $k_1>2$, then $$\varphi^3(2^{k_1})=2^{3(k_1-1)}>\dfrac{9}{8}\cdot2^{2k_1}.$$ So, there are no solutions for $a$ if $k_1$ and $k_j>0$ for some $j>2$ or $k_1>2$. It follows that $k_1 \leq 2$, so $a \in \{1,2,4\}$, which gives $n \in \{1,6,12\}$.

In conclusion, we have $n \in \{1,2,3,4,6,8,10,12,18,24,30,42\}$.

Note: Let $$A_x=\{n \in \mathbb{N}^* \ | \ \varphi(n) \leq n^x\}.$$ Observe that the function $$g(x)=|A_x|$$ is increasing for $x \in [0,1)$. The problem tells us that $g(2/3)=12$. Moreover, it's easy to see that $g(0)=2$ and $g(1/2)=4$.

Mathematical Reflections 2016, Issue 6 - Problem S395

Problem:
Let $a,b,c$ be positive integers such that $$a^2b^2+b^2c^2+c^2a^2-69abc=2016.$$
Find the least possible value of $\min(a,b,c)$.

Proposed by Titu Andreescu, University of Texas at Dallas, USA


Solution:
Assume without loss of generality that $a \leq b \leq c$. If $a=1$, then $$b^2+b^2c^2+c^2-69bc=2016.$$ This equation is equivalent to
$$(2bc-67)^2+4(c-b)^2=12553.$$ It follows that $0 \leq c-b \leq 56$ and $0 < bc \leq 89$. Hence $b^2 \leq 89$, which gives $b \leq 9$. An easy check gives no positive integer solutions for $c$. If $a=2$, then $$4b^2+b^2c^2+4c^2-138bc=2016.$$
This equation is equivalent to $$(bc-65)^2+4(c-b)^2=6241.$$ It follows that $0 \leq c-b \leq 39$ and $0 < bc \leq 144$. Hence $b^2 \leq 144$, which gives $b \leq 12$. An easy check gives $b=c=12$, so the least possible value of $\min(a,b,c)$ is $2$.

Mathematical Reflections 2016, Issue 6 - Problem S393

Problem:
If $n$ is an integer such that $n^2+11$ is a prime, prove that $n+4$ is not a perfect cube.

Proposed by Titu Andreescu, University of Texas at Dallas, USA


Solution:
Assume that $n+4$ is a perfect cube. Then $n+4=m^3$, where $m \in \mathbb{Z}$, i.e. $n=m^3-4$. It follows that
$$\begin{array}{lll} n^2+11&=&(m^3-4)^2+11\\&=&m^6-8m^3+27\\&=&m^6+m^3+27-9m^3\\&=&(m^2)^3+(m)^3+(3)^3-9m^3\\&=&(m^2+m+3)(m^4-m^3-2m^2-3m+9). \end{array}$$ As $m^2+m+3 \geq 3$ and $m^4-m^3-2m^2-3m+9 \geq 3$ for all $m \in \mathbb{Z}$, then  $n^2+11$ is not prime, contradiction.

Mathematical Reflections 2016, Issue 6 - Problem J331

Problem:
Solve the equation $$4x^3+\dfrac{127}{x}=2016.$$

Proposed by Adrian Andreescu, Dallas, Texas


Solution:
The given equation is equivalent to $$4x^4-2016x+127=0.$$ Observe that
$$\begin{array}{lll} 4x^4-2016x+127&=&4x^4-256x^2+(2x^2+16x)+127(2x^2-16x)+127\\&=&(2x^2-16x+1)(2x^2+16x)+127(2x^2-16x+1) \\ &=&(2x^2-16x+1)(2x^2+16x+127)\end{array}$$
So, the given equation becomes $$(2x^2-16x+1)(2x^2+16x+127)=0.$$
We obtain $$x=\dfrac{8 \pm \sqrt{62}}{2}, \qquad x=\dfrac{-8 \pm i\sqrt{190}}{2}.$$

Recreatii Matematice 2/2016, Problem VII.208

Problem:
Prove that the number $$N=2016^{n+1}-2015n-2016$$ has at least $27$ divisors for any $n \in \mathbb{N}^*$.

Proposed by Alessandro Ventullo, Milan, Italy

Solution:
We have $$\begin{array}{lll} N&=&2016\cdot(2016^n-1)-2015n\\&=&2016\cdot2015\cdot(2016^{n-1}+2016^{n-2}+\ldots+1)-2015n\\&=&2015\cdot(2016^n+2016^{n-1}+\ldots+2016-n)\\&=&2015\cdot[(2016^n-1)+(2016^{n-1}-1)+\ldots+(2016-1)] \end{array}$$
Since $2016^n-1$ is divisible by $2015$ for all $n \geq 1$, we have that $2015^2 \ | \ N$. As $2015=5\cdot13\cdot31$, then $2015=5^2\cdot13^2\cdot31^2$, which has $27$ divisors. The conclusion follows.

Gazeta Matematica 6-7-8/2016, Problem 27253

Problem:
Evaluate $$\sum_{n=6}^{\infty} \dfrac{n^3-12n^2+47n-60}{n^5-5n^3+4n}$$

Proposed by Alessandro Ventullo, Milan, Italy


Solution:
Observe that $$n^3-12n^2+47n-60=(n-5)(n-4)(n-3)$$ and $$n^5-5n^3+4n=(n-2)(n-1)n(n+1)(n+2),$$ so we have to evaluate
$$\sum_{n=6}^{\infty} \dfrac{(n-5)(n-4)(n-3)}{(n-2)(n-1)n(n+1)(n+2)}.$$
Set $f(x)=\dfrac{(x-5)(x-4)(x-3)}{(x-2)(x-1)x(x+1)(x+2)}$. Since $x=0,\pm 1,\pm 2$ are simple poles, then $$\textrm{Res}(f,2)=\lim_{x \to 2}(x-2)f(x)=-\dfrac{1}{4},$$ $$\textrm{Res}(f,1)=\lim_{x \to 1}(x-1)f(x)=4,$$ $$\textrm{Res}(f,0)=\lim_{x \to 0}xf(x)=-15,$$ $$\textrm{Res}(f,-1)=\lim_{x \to -1}(x+1)f(x)=20,$$ $$\textrm{Res}(f,-2)=\lim_{x \to -2}(x+2)f(x)=-\dfrac{35}{4}.$$
So, $$\begin{array}{lll} \dfrac{(n-5)(n-4)(n-3)}{(n-2)(n-1)n(n+1)(n+2)}&=&-\dfrac{1}{4(n-2)}+\dfrac{4}{n-1}-\dfrac{15}{n}+\dfrac{20}{n+1}-\dfrac{35}{4(n+2)}\\  &=&\left(-\dfrac{1}{4(n-2)}+\dfrac{1}{4(n+2)}\right)+\left(\dfrac{4}{n-1}-\dfrac{4}{n+1}\right)+\\&+&\left(-\dfrac{15}{n}+\dfrac{15}{n+1}\right)+\left(\dfrac{9}{n+1}-\dfrac{9}{n+2}\right). \end{array}$$
Since $$\sum_{n=6}^{\infty} \left(-\dfrac{1}{4(n-2)}+\dfrac{1}{4(n+2)}\right)=\dfrac{1}{4}\left(-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-\dfrac{1}{7}\right),$$
$$\sum_{n=6}^{\infty} \left(\dfrac{4}{n-1}-\dfrac{4}{n+1}\right)=4\left(\dfrac{1}{5}+\dfrac{1}{6}\right),$$ $$\sum_{n=6}^{\infty} \left(-\dfrac{15}{n}+\dfrac{15}{n+1}\right)=-\dfrac{15}{6},$$ $$\sum_{n=6}^{\infty} \left(\dfrac{9}{n+1}-\dfrac{9}{n+2}\right)=-\dfrac{9}{8},$$ we have $$\sum_{n=6}^{\infty} \dfrac{(n-5)(n-4)(n-3)}{(n-2)(n-1)n(n+1)(n+2)}=\dfrac{1}{4}\left(-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-\dfrac{1}{7}\right)+4\left(\dfrac{1}{5}+\dfrac{1}{6}\right)-\dfrac{15}{6}-\dfrac{9}{8}=\dfrac{1}{16}.$$

Gazeta Matematica 6-7-8/2016, Problem 27248

Problem:
Solve in real numbers the equation: $$\sqrt[3]{x^6-1}-\sqrt[3]{3x^5-5x^3+3x}=x^2-x-1.$$

Proposed by Alessandro Ventullo, Milan, Italy


Solution:
Observe that $$\begin{array}{lll} (x^6-1)-(3x^5-5x^3+3x)&=&x^6-3x^5+5x^3-3x-1\\&=&(x^2-x-1)(x^4-2x^3-x^2+2x+1)\\&=&(x^2-x-1)(x^2-x-1)^2\\&=&(x^2-x-1)^3. \end{array}$$ Then, from the identity $(a-b)^3=a^3-b^3-3ab(a-b)$, the given equation can be written as
$$(x^6-1)-(3x^5-5x^3+3x)-3\sqrt[3]{x^6-1}\cdot\sqrt[3]{3x^5-5x^3+3x}\cdot[\sqrt[3]{x^6-1}-\sqrt[3]{3x^5-5x^3+3x}]=(x^2-x-1)^3,$$ i.e. $$\sqrt[3]{x^6-1}\cdot\sqrt[3]{3x^5-5x^3+3x}\cdot[\sqrt[3]{x^6-1}-\sqrt[3]{3x^5-5x^3+3x}]=0.$$ Since $\sqrt[3]{x^6-1}-\sqrt[3]{3x^5-5x^3+3x}=x^2-x-1$, then the given equation becomes $$\sqrt[3]{x^6-1}\cdot\sqrt[3]{3x^5-5x^3+3x}\cdot(x^2-x-1)=0,$$ i.e. $$(x^6-1)(3x^5-5x^3+3x)(x^2-x-1)=0.$$ Finally, we have $$(x-1)(x^2+x+1)(x+1)(x^2-x+1)x(3x^4-5x^2+3)(x^2-x-1)=0.$$
Solving each equation, we get $x \in \left\{-1,0,1,\dfrac{1-\sqrt{5}}{2},\dfrac{1+\sqrt{5}}{2}\right\}$.

Gazeta Matematica 6-7-8/2016, Problem 27246

Problem:
Do there distinct prime numbers $p,q,r$ such that $\sqrt{p},\sqrt{q},\sqrt{r}$ are terms of an arithmetic progression?

Proposed by Alessandro Ventullo, Milan, Italy


Solution:
The answer is no. Assume by contradiction that $\sqrt{p},\sqrt{q},\sqrt{r}$ are in the same arithmetic progression. If $d \neq 0$ is the common difference, then there exist integers $m,n \neq 0$ such that $$\begin{array}{rcl}\sqrt{q}-\sqrt{p}&=&md, \\ \sqrt{r}-\sqrt{p}&=&nd. \end{array}$$ Dividing the first and the second equation by $m$ and $n$ respectively and substituting, we obtain $$m(\sqrt{r}-\sqrt{p})=n(\sqrt{q}-\sqrt{p}),$$ whence $$m\sqrt{r}-n\sqrt{q}=(m-n)\sqrt{p}.$$ Squaring both sides, we obtain $$rm^2+qn^2-2mn\sqrt{rq}=p(m-n)^2,$$ which gives $$\sqrt{rq}=\dfrac{rm^2+qn^2-p(m-n)^2}{2mn}.$$ But this equality is false, since the left-hand side is irrational and the right-hand side is rational.

Crux Mathematicorum 2016, Issue 1 - Problem 4108

Problem:
Write $2010$ as a sum of consecutive squares. Is it possible to write $2014$ as the sum of several consecutive squares?

Proposed by Alessandro Ventullo, Milan, Italy

Solution:
(a) Let $k$ be the number of consecutive perfect squares which satisfy the conditions and let $n \in \mathbb{N}$.  Then, $$(n+1)^2+(n+2)^2+\ldots+(n+k)^2=2010.$$ Since $$\begin{array}{lll}(n+1)^2+\ldots+(n+k)^2&=&kn^2+2n(1+2+\ldots+k)+(1^2+2^2+\ldots+k^2)\\&=&kn^2+2n\cdot\dfrac{k(k+1)}{2}+\dfrac{k(k+1)(2k+1)}{6}\\&=&\dfrac{k}{6}[6n^2+6n(k+1)+(k+1)(2k+1)], \end{array}$$ we get
$$k[6n^2+6n(k+1)+(k+1)(2k+1)]=12060.    \qquad          (1)
$$
Moreover, since $\dfrac{k(k+1)(2k+1)}{6}=1^2+2^2+\ldots+k^2 \leq (n+1)^2+(n+2)^2+\ldots+(n+k)^2=2010$, we get $k \leq 17$. So, $k \ | \ 12060$ and $k \leq 17$, which gives $k \in \{1,2,3,4,5,6,9,10,12,15\}$. Observe that if $k=4h+2$, where $h \in \mathbb{N}$, then the left-hand side in (1) is not divisible by $4$, but the right-hand side is divisible by $4$. So, $k \in \{1,3,5,9,12,15\}$. If $k=15$, equation (1) gives $$6n(n+16)+496=804 \implies 6n(n+16)=308,$$ a contradiction. If $k=12$, equation (1) gives $$6n(n+13)+325=1005 \implies 6n(n+13)=680,$$ a contradiction. If $k=9$, equation (1) gives $$6n(n+10)+190=1340 \implies 6n(n+10)=1150,$$ a contradiction. If $k=5$, equation (1) gives $$6n(n+6)+66=2412 \implies n(n+6)=391,$$ which gives $n=17$. Therefore, $18^2+19^2+20^2+21^2+22^2=2010$, and the maximum number of consecutive perfect squares which satisfy the condition is $5$.

(b) The answer is no. Indeed, if there exist $k,n \in \mathbb{N}$ such that $$(n+1)^2+(n+2)^2+\ldots+(n+k)^2=2014,$$ then as we have seen in (a),
$$
k[6n^2+6n(k+1)+(k+1)(2k+1)]=2014\cdot6=12084   \qquad        (2)
$$
and $\dfrac{k(k+1)(2k+1)}{6} \leq 2014$. So, $k \ | \ 12084$, $k \leq 17$ and $k \neq 4h+2$ for any $h \in \mathbb{N}$. It follows that $k \in \{1,3,4,12\}$. Since $2014$ is not a perfect square, $k \neq 1$. As $24^2+25^2+26^2=1877<2014<25^2+26^2+27^2=2030$, then $k \neq 3$. As $20^2+21^2+22^2+23^2=1854<2014<21^2+22^2+23^2+24^2=2030$, then $k \neq 4$. Finally, if $k=12$ equation (2) gives $6n(n+13)+325=1007$, i.e. $6n(n+13)=682$, a contradiction. Therefore there does not exist $k \in \mathbb{N}$ which satisfy the condition, and the conclusion follows.