Let a and b be distinct zeros of the polynomial x^3-2x+c. Prove that a^2(2a^2+4ab+3b^2)=3 if and only if b^2(3a^2+4ab+2b^2)=5.
Proposed by Titu Andreescu.
Solution:
Let \alpha be the other root of the polynomial x^3-2x+c. Then \alpha^3-2\alpha+c=0 and a+b=-\alpha, \qquad ab=\alpha^2-2.
Therefore, \begin{array}{rcl} a^2(2a^2+4ab+3b^2)+b^2(3a^2+4ab+2b^2) & = & 2(a+b)^2(a^2+b^2)+2a^2b^2 \\ & = & 2\alpha^2 [\alpha^2-2(\alpha^2-2)]+2(\alpha^2-2)^2 \\ &=& 2[\alpha^2-(\alpha^2-2)]^2 \\ &=& 8, \end{array}
and the statement follows.
No comments:
Post a Comment