Find the minimum of 2^x-4^x+6^x-8^x-9^x+12^x where x is a positive real number.
Proposed by Titu Andreescu.
Solution:
We have \begin{array}{rcl}2^x-4^x+6^x-8^x-9^x+12^x&=&(4^x-3^x)(3^x-2^x)-[(4^x-3^x)+(3^x-2^x)]\\&=&(4^x-3^x-1)(3^x-2^x-1)-1. \end{array}
Let f_n(x)=(n+1)^x-n^x-1, where n is a positive integer. f_n(x) is increasing since
f'_n(x)=(n+1)^x\log(n+1)-n^x\log n > 0 \iff \left(1+\dfrac{1}{n}\right)^x>\dfrac{\log n}{\log (n+1)} for all x \in \mathbb{R}^+. Moreover f_n(1)=0, so f_n(x) \geq 0 if x \in [1,\infty) and f_n(x) \leq 0 if x \in (0,1], for all n \in \mathbb{N}^*. Therefore, f_3(x)f_2(x)-1 \geq -1 \qquad \forall x \in \mathbb{R}^+ and the equality occurs if and only if x=1.
No comments:
Post a Comment