Let a, b, c be nonnegative real numbers such that a + b + c = 1. Prove that
\sqrt[3]{13a^3+14b^3}+\sqrt[3]{13b^3+14c^3}+\sqrt[3]{13c^3+14a^3} \geq 3.
Proposed by Titu Andreescu.
Solution:
The second Minkowski's Inequality (see \emph{Zdravko Cvetkovski - Inequalities. Theorems, Techniques and Selected Problems, page 99}) states that if a_1,a_2,\ldots,a_n and b_1,b_2,\ldots,b_n are positive real numbers and p>1, then
\left(\left(\sum_{i=1}^n a_i\right)^p+\left(\sum_{i=1}^n b_i\right)^p \right)^{1/p} \leq \sum_{i=1}^n (a^p_i+b^p_i)^{1/p}.
Equality occurs if and only if \dfrac{a_1}{b_1}=\dfrac{a_2}{b_2}=\ldots=\dfrac{a_n}{b_n}.\\
Now, take (a_1,a_2,a_3)=(\sqrt[3]{13}a,\sqrt[3]{13}b,\sqrt[3]{13}c), (b_1,b_2,b_3)=(\sqrt[3]{14}b, \sqrt[3]{14}c,\sqrt[3]{14}a) and p=3. Then,
\begin{array}{lll} \sqrt[3]{13a^3+14b^3}+\sqrt[3]{13b^3+14c^3}+\sqrt[3]{13c^3+14a^3} & \geq & \sqrt[3]{\left(\sqrt[3]{13(a+b+c)}\right)^3+\left(\sqrt[3]{14(a+b+c)}\right)^3} \\ & = & \sqrt[3]{(\sqrt[3]{13})^3+(\sqrt[3]{14})^3} \\ &=& 3. \end{array}
Equality occurs if and only if \dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}.
\left(\left(\sum_{i=1}^n a_i\right)^p+\left(\sum_{i=1}^n b_i\right)^p \right)^{1/p} \leq \sum_{i=1}^n (a^p_i+b^p_i)^{1/p}.
Equality occurs if and only if \dfrac{a_1}{b_1}=\dfrac{a_2}{b_2}=\ldots=\dfrac{a_n}{b_n}.\\
Now, take (a_1,a_2,a_3)=(\sqrt[3]{13}a,\sqrt[3]{13}b,\sqrt[3]{13}c), (b_1,b_2,b_3)=(\sqrt[3]{14}b, \sqrt[3]{14}c,\sqrt[3]{14}a) and p=3. Then,
\begin{array}{lll} \sqrt[3]{13a^3+14b^3}+\sqrt[3]{13b^3+14c^3}+\sqrt[3]{13c^3+14a^3} & \geq & \sqrt[3]{\left(\sqrt[3]{13(a+b+c)}\right)^3+\left(\sqrt[3]{14(a+b+c)}\right)^3} \\ & = & \sqrt[3]{(\sqrt[3]{13})^3+(\sqrt[3]{14})^3} \\ &=& 3. \end{array}
Equality occurs if and only if \dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}.
No comments:
Post a Comment