Let a be a real number such that 0 \leq a < 1. Prove that
\left\lfloor a\left(1+\left\lfloor \dfrac{1}{1-a} \right\rfloor \right)\right\rfloor+1=\left\lfloor \dfrac{1}{1-a} \right\rfloor.
Proposed by Arkady Alt.
Solution:
Let m \in \mathbb{N} and \alpha \in [0,1) such that \dfrac{1}{1-a}=m+\alpha. Then, we have to prove that
\left\lfloor \left(1-\dfrac{1}{m+\alpha}\right)(1+m) \right\rfloor+1=m.
Indeed, \left\lfloor \left(1-\dfrac{1}{m+\alpha}\right)(1+m) \right\rfloor=\left\lfloor m+1-\dfrac{m+1}{m+\alpha} \right\rfloor=m-1, where the last equality follows from -2<-\dfrac{m+1}{m+\alpha}<-1.
\left\lfloor \left(1-\dfrac{1}{m+\alpha}\right)(1+m) \right\rfloor+1=m.
Indeed, \left\lfloor \left(1-\dfrac{1}{m+\alpha}\right)(1+m) \right\rfloor=\left\lfloor m+1-\dfrac{m+1}{m+\alpha} \right\rfloor=m-1, where the last equality follows from -2<-\dfrac{m+1}{m+\alpha}<-1.
No comments:
Post a Comment