Evaluate \lim_{n \to \infty} \sum_{k=0}^\infty \dfrac{1}{(kn+1)k!}.
Proposed by Dorin Andrica.
Solution:
Observe that for any n,k \geq 1, it holds n+1 \leq kn+1 \leq n(k+1). Therefore,
1+\sum_{k=1}^\infty \dfrac{1}{n(k+1)!} \leq \sum_{k=0}^\infty \dfrac{1}{(kn+1)k!} \leq 1+\sum_{k=1}^\infty \dfrac{1}{(n+1)k!}, i.e. 1+\dfrac{e-2}{n} \leq \sum_{k=0}^\infty \dfrac{1}{(kn+1)k!} \leq 1+\dfrac{e-1}{n+1}.
By the Squeeze Theorem, we have
1 \leq \lim_{n \to \infty} \sum_{k=0}^\infty \dfrac{1}{(kn+1)k!} \leq 1, hence \displaystyle \lim_{n \to \infty} \sum_{k=0}^\infty \dfrac{1}{(kn+1)k!}=1.
No comments:
Post a Comment