For n \in \mathbb{N}, n \geq 2, find the greatest integer less than 2(e^{\frac{1}{n+1}}+\ldots+e^{\frac{1}{n+n}}).
Proposed by Marius Cavachi.
Solution:
We claim that the greatest integer less than 2(e^{\frac{1}{n+1}}+\ldots+e^{\frac{1}{n+n}}) is 2n+1. Indeed,
2(e^{\frac{1}{n+1}}+\ldots+e^{\frac{1}{n+n}}) \geq 2ne^{\frac{1}{2n}} \geq 2n\left(1+\dfrac{1}{2n}\right)=2n+1,
but 2(e^{\frac{1}{n+1}}+\ldots+e^{\frac{1}{n+n}}) \leq 2ne^{\frac{1}{n+1}} < 2n+2,
where the last inequality can be obtained observing that \dfrac{1}{n+1}=\int_{1}^{1+\frac{1}{n}} \dfrac{1}{1+\frac{1}{n}} \ dx <\int_{1}^{1+\frac{1}{n}} \dfrac{1}{x} \ dx=\log\left(1+\dfrac{1}{n}\right).
No comments:
Post a Comment