Let a, b, c, d be positive real numbers. Prove that
2(ab + cd)(ac + bd)(ad + bc) \geq (abc+bcd+cda+dab)^2.
Proposed by Ivan Borsenco.
Solution:
The given inequality is equivalent to the inequality \sum_{cyc} (abc)^2 \geq 2abcd\left(\sum_{cyc} (ab-a^2)+ac+bd \right).
Using the Rearrangement Inequality and the AM-GM Inequality, we get
\begin{array}{lll} \displaystyle 2abcd\left(\sum_{cyc} (ab-a^2)+ac+bd \right) & \leq & 2abcd(ac+bd)\\&=&(ac)^2 \cdot 2bd+ (bd)^2\cdot 2ac \\ & \leq & \displaystyle \sum_{cyc} (abc)^2, \end{array} and the conclusion follows.
No comments:
Post a Comment