Prove that for any positive integer k,
\lim_{n \to \infty} \left(\dfrac{1+\sqrt[n]{2}+\ldots+\sqrt[n]{k}}{k}\right)>\dfrac{k}{e},
where e is Euler constant.
Proposed by Ivan Borsenco.
Let f(x)=\sqrt[n]{x} and let \mathcal{P}=\{[0,1],\ldots,[k-1,k]\} be a partition of the interval I=[0,k]. Since f is strictly increasing on I, we have \dfrac{1}{k}\sum_{i=1}^k \sqrt[n]{i}> \dfrac{1}{k}\int_{0}^k \sqrt[n]{x} \ dx=\dfrac{n}{n+1}\sqrt[n]{k}. Therefore,
\left(\dfrac{1}{k}\sum_{i=1}^k \sqrt[n]{i}\right)^n>k\left(1-\dfrac{1}{n+1}\right)^n and taking the limit of both sides, we obtain
\lim_{n \to \infty}\left(\dfrac{1}{k}\sum_{i=1}^k \sqrt[n]{i}\right)^n>\dfrac{k}{e}.
No comments:
Post a Comment