Loading [MathJax]/extensions/MathEvents.js

Thursday, December 4, 2014

Mathematical Reflections 2014, Issue 5 - Problem U315

Problem:
Let X and Y be complex matrices of the same order with XY^2-Y^2X=Y. Prove that Y is nilpotent.

Proposed by Radouan Boukharfane.

Solution:
We prove by induction on k \in \mathbb{Z}^+ that \textrm{tr}(Y^k)=0 for all k \in \mathbb{Z}^+, so that the conclusion will follow. We have
\textrm{tr}(Y)=\textrm{tr}(XY^2-Y^2X)=\textrm{tr}(XY^2)-\textrm{tr}(Y^2X)=\textrm{tr}(Y^2X)-\textrm{tr}(Y^2X)=0.
Assume that \textrm{tr}(Y^k)=0 for some k \in \mathbb{Z}^+. Then,
\begin{array}{lll}\textrm{tr}(Y^{k+1})&=&\textrm{tr}(Y^k\cdot Y)\\&=&\textrm{tr}(Y^k(XY^2-Y^2X))\\&=&\textrm{tr}((Y^kX)Y^2))-\textrm{tr}(Y^{k+2}X)\\&=&\textrm{tr}(Y^{k+2}X)-\textrm{tr}(Y^{k+2}X)\\&=&0, \end{array} as desired.

No comments:

Post a Comment