Find all positive integers n for which there are positive integers a_0, a_1, \ldots, a_n such that a_0 + a_1 + \ldots + a_n = 5(n-1) and \dfrac{1}{a_0}+\dfrac{1}{a_1}+\ldots+\dfrac{1}{a_n}=2.
Proposed by Titu Andreescu
Solution:
Assume without loss of generality that a_0 \leq a_1 \leq \ldots \leq a_n. By the AM-GM Inequality, we have 10(n-1)=\left(a_0 + a_1 + \ldots + a_n\right)\left(\dfrac{1}{a_0}+\dfrac{1}{a_1}+\ldots+\dfrac{1}{a_n}\right) \geq (n+1)^2, so n \leq 6. Clearly, n>1. We have five cases.
(i) n=2. We immediately get a_0=1,a_1=2,a_2=2.
(ii) n=3. We immediately get a_0=1,a_1=3,a_2=3,a_3=3.
(iii) n=4. Observe that \dfrac{5}{a_0}\geq 2, so a_0=1,2. If a_0=1, then a_1+a_2+a_3+a_4=14 and \dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+\dfrac{1}{a_4}=1, but this would imply 14=(a_1+a_2+a_3+a_4)\left(\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+\dfrac{1}{a_4}\right)\geq 16, contradiction. So, a_0=2, which gives a_1+a_2+a_3+a_4=13 and \dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+\dfrac{1}{a_4}=\dfrac{3}{2}. Now, \dfrac{4}{a_1} \geq \dfrac{3}{2} implies that a_1=2. So, a_2+a_3+a_4=11 and \dfrac{1}{a_2}+\dfrac{1}{a_3}+\dfrac{1}{a_4}=1. Since \dfrac{3}{a_2} \geq 1, we get a_2=2 or a_2=3. If a_2=2, then a_3+a_4=9 and \dfrac{1}{a_3}+\dfrac{1}{a_4}=\dfrac{1}{2}, which gives a_3=3,a_4=6. If a_2=3, then a_3+a_4=8 and \dfrac{1}{a_3}+\dfrac{1}{a_4}=\dfrac{2}{3}, so no solutions.
(iv) n=5. Reasoning as before, we get a_0=2,a_1=2,a_2=4,a_3=4,a_4=4,a_5=4.
(v) n=6. Observe that \dfrac{7}{a_0} \geq 2, so a_0 \leq 3. But if a_0=i for i=1,2, then (25-i)\left(2-\dfrac{1}{i}\right)=\left(a_1+\ldots+a_6\right)\left(\dfrac{1}{a_1}+\ldots+\dfrac{1}{a_6} \right) \geq 36 gives a contradiction. So, a_0=3, which gives a_1+\ldots+a_6=22 and \dfrac{1}{a_1}+\ldots+\dfrac{1}{a_6}=\dfrac{5}{3}. Therefore, a_1=3, which gives a_2+\ldots+a_6=19 and \dfrac{1}{a_2}+\ldots+\dfrac{1}{a_6}=\dfrac{4}{3}. Then a_2=3, which gives a_3+a_4+a_5+a_6=16 and \dfrac{1}{a_3}+\dfrac{1}{a_4}+\dfrac{1}{a_5}+\dfrac{1}{a_6}=1, so a_3=4,a_4=4,a_5=4,a_6=4.
We conclude that n=2,3,4,5,6.
No comments:
Post a Comment