Processing math: 7%

Friday, July 14, 2017

Mathematical Reflections 2017, Issue 2 - Problem U407

Problem:
Prove that for every \varepsilon>0 \int_2^{2+\varepsilon} e^{2x-x^2} \ dx<\dfrac{\varepsilon}{1+\varepsilon}.

Proposed by Titu Andreescu, University of Texas at Dallas, USA


Solution:
Observe that for all real numbers t \geq 1 we have t^2 \leq e^{t^2-1}. Indeed, put f(t)=e^{t^2-1}-t^2. Then, f(1)=0 and f'(t)=2t(e^{t^2-1}-1) \geq 0 for all t \geq 1. Now, put t=x-1. We have (x-1)^2 \leq e^{x^2-2x} for all x \geq 2, i.e. e^{2x-x^2} \leq \dfrac{1}{(x-1)^2}.
So, \int_2^{2+\varepsilon} e^{2x-x^2} \ dx \leq \int_2^{2+\varepsilon} \dfrac{dx}{(x-1)^2}=\left[-\dfrac{1}{x-1}\right]_2^{2+\varepsilon}=\dfrac{\varepsilon}{1+\varepsilon}.

No comments:

Post a Comment