Let a and b be nonnegative real numbers such that a+b=1. Prove that \dfrac{289}{256} \leq (1+a^4)(1+b^4) \leq 2.
Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
Solution:
By the Cauchy-Schwarz Inequality, we have (1+a^4)(1+b^4) \geq (1+a^2b^2)^2=(1+a^2(1-a)^2)^2 \geq \left(1+\dfrac{1}{16}\right)^2=\dfrac{289}{256} and the minimum is attained if and only if a=b=\dfrac{1}{2}. By the AM-GM Inequality, we have
(1+a^4)(1+b^4) \leq \dfrac{(1+a^4)^2+(1+b^4)^2}{2}=\dfrac{(1+a^4)^2+(1+(1-a)^4)^2}{2}.
Using the fact \begin{array}{rcll} a^4 & \leq & (1-a)^4, & a \in [0,1/2] \\ (1-a)^4 & \leq & a^4, & a \in [1/2,1], \end{array} then if a \in [0,1/2], we have
\dfrac{(1+a^4)^2+(1+(1-a)^4)^2}{2} \leq (1+(1-a)^4)^2 \leq 2
and if a \in [1/2,1], we have
\dfrac{(1+a^4)^2+(1+(1-a)^4)^2}{2} \leq (1+a^4)^2 \leq 2.
The conclusion follows.
No comments:
Post a Comment