Find all cubic polynomials P(x) \in \mathbb{R}[x] such that P\left(1-\dfrac{x(3x+1)}{2}\right)-P^2(x)+P\left(\dfrac{x(3x-1)}{2}-1\right)=1 \qquad \forall x \in \mathbb{R}.
Proposed by Alessandro Ventullo, Milan, Italy
Solution:
Let P(x)=ax^3+bx^2+cx+d be a third-degree polynomial with a,b,c,d \in \mathbb{R}, a \neq 0, such that
P\left(1-\dfrac{x(3x+1)}{2}\right)-P^2(x)+P\left(\dfrac{x(3x-1)}{2}-1\right)=1 \qquad \forall x \in \mathbb{R}.
Setting x=-1,x=0,x=1 into the given relation, we obtain
\begin{array}{rcl} P(0)-P^2(-1)+P(1)&=&1 \\ P(1)-P^2(0)+P(-1)&=&1 \\ P(-1)-P^2(1)+P(0)&=&1. \end{array}
Adding these three equations side by side, we get (P(-1)-1)^2+(P(0)-1)^2+(P(1)-1)^2=0, so P(-1)=P(0)=P(1)=1. It follows that
\begin{array}{rcl} d&=&1 \\ a+b+c+d&=&1 \\ -a+b-c+d&=&1. \end{array} We obtain d=1,b=0 and c=-a. So, P(x)=ax^3-ax+1.
Setting x=2 into the given relation, we have P(-6)-P^2(2)+P(4)=1, which gives -36a^2-162a+1=1. Likewise, setting x=-2 into the given relation, we have P(-4)-P^2(-2)+P(6)=1, which gives -36a^2+162a+1=1. Subtracting, we get 264a=0, i.e. a=0. So, we obtain P(x)=1.
No comments:
Post a Comment