Processing math: 0%

Monday, October 9, 2017

Mathematical Reflections 2017, Issue 3 - Problem S411

Problem:
Solve in real numbers the system of equations
\left\{\begin{array}{rcl} \sqrt{x}-\sqrt{y}&=&45 \\ \sqrt[3]{x-2017}-\sqrt[3]{y}&=&2. \end{array} \right.

Proposed by Adrian Andreescu, Dallas, Texas, USA


Solution:

Squaring both sides of the first equation, cubing both sides of the second equation and using \sqrt[3]{x-2017}-\sqrt[3]{y}=2, we obtain the system of equations
\begin{array}{rcl} x+y-2\sqrt{xy}&=&2025 \\ x-y-6\sqrt[3]{(x-2017)y}&=&2025. \end{array}
Subtracting side by side these two equations, we get
2\sqrt[3]{y}(\sqrt[3]{y^2}-\sqrt{x}\cdot \sqrt[6]{y}+3\sqrt[3]{x-2017})=0.
If y=0, we get x=2025. If y \neq 0, then \sqrt[3]{y^2}-\sqrt{x}\cdot \sqrt[6]{y}+3\sqrt[3]{x-2017}=0, i.e.
\sqrt[6]{y}(\sqrt{y}-\sqrt{x})+3\sqrt[3]{x-2017}=0 \iff -45\sqrt[6]{y}+3\sqrt[3]{x-2017}=0, which gives x=3375\sqrt{y}+2017.
Substituting this equation into the first and the second equation of the system, we get
y=\left(\dfrac{16}{3285+223\sqrt{217}}\right)^2, \qquad y=\left(\dfrac{3285+223\sqrt{217}}{2}\right)^2.
So, (x,y)=(2025,0), (x,y)=\left(2017+\dfrac{54000}{3285+223\sqrt{217}},\left(\dfrac{16}{3285+223\sqrt{217}}\right)^2\right),
(x,y)=\left(2017+\dfrac{3375}{2}(3285+223\sqrt{217}),\left(\dfrac{3285+223\sqrt{217}}{2}\right)^2\right).

No comments:

Post a Comment