Processing math: 100%

Monday, October 9, 2017

Mathematical Reflections 2017, Issue 3 - Problem U412

Problem:
Let P(x) be a monic polynomial with real coefficients, of degree n, which has n real roots. Prove that if
P(c) \leq \left(\dfrac{b^2}{a}\right)^n,
then P(ax^2+2bx+c) has at least one real root.

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

Solution:
If P(x) is an n-th degree monic polynomial with real coefficients and with n real roots \alpha_1,\ldots,\alpha_n, then
P(x)=(x-\alpha_1)(x-\alpha_2)\cdot \ldots \cdot (x-\alpha_n).
Hence, P(c)=(c-\alpha_1)(c-\alpha_2)\cdot \ldots \cdot (c-\alpha_n) \leq \left(\dfrac{b^2}{a}\right)^n
and P(ax^2+2bx+c)=(ax^2+2bx+c-\alpha_1)(ax^2+2bx+c-\alpha_2)\cdot \ldots \cdot (ax^2+2bx+c-\alpha_n).
Assume by contradiction that P(ax^2+2bx+c) has no real roots. Then, each factor has negative discriminant, i.e.
\begin{array}{lll} b^2-a(c-\alpha_1) & < & 0 \\ b^2-a(c-\alpha_2) & < & 0 \\ \vdots & \vdots & \vdots \\ b^2-a(c-\alpha_n) & < & 0. \end{array} \iff \begin{array}{lll} b^2 & < & a(c-\alpha_1) \\ b^2 & < & a(c-\alpha_2) \\ \vdots & \vdots & \vdots \\ b^2 & < & a(c-\alpha_n). \end{array}
Multiplying side by side all these inequalities, we get (b^2)^n < a^n(c-\alpha_1)(c-\alpha_2)\cdot \ldots \cdot (c-\alpha_n), i.e.
\left(\dfrac{b^2}{a}\right)^n < (c-\alpha_1)(c-\alpha_2)\cdot \ldots \cdot (c-\alpha_n), contradiction.

No comments:

Post a Comment