Solve in real numbers the equation 2\sqrt{x-x^2}-\sqrt{1-x^2}+2\sqrt{x+x^2}=2x+1.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution:
Clearly, 0 \leq x \leq 1. Observe that
\renewcommand{\arraystretch}{2} \begin{array}{rcl} (\sqrt{x}+\sqrt{1-x})^2&=&1+2\sqrt{x-x^2} \\ \dfrac{1}{2}(\sqrt{1-x}+\sqrt{1+x})^2&=&1+\sqrt{1-x^2} \\ (\sqrt{x}-\sqrt{1+x})^2&=&2x+1-2\sqrt{x+x^2}. \end{array}
So, the given equation is equivalent to
(\sqrt{x}+\sqrt{1-x})^2-(\sqrt{x}-\sqrt{1+x})^2=\dfrac{1}{2}(\sqrt{1-x}+\sqrt{1+x})^2,
i.e. (\sqrt{1-x}+\sqrt{1+x})(2\sqrt{x}+\sqrt{1-x}-\sqrt{1+x})=\dfrac{1}{2}(\sqrt{1-x}+\sqrt{1+x})^2.
Since \sqrt{1-x}+\sqrt{1+x}>0, then the equation becomes 2\sqrt{x}+\sqrt{1-x}-\sqrt{1+x}=\dfrac{1}{2}(\sqrt{1-x}+\sqrt{1+x}), i.e. 4\sqrt{x}=3\sqrt{1+x}-\sqrt{1-x}. Squaring both sides, we get 16x=9(1+x)+(1-x)-6\sqrt{1-x^2}, i.e. (1+x)+9(1-x)-6\sqrt{1-x^2}=0, so \left(\sqrt{1+x}-3\sqrt{1-x}\right)^2=0. It follows that \sqrt{1+x}=3\sqrt{1-x}, i.e. 1+x=9(1-x), which gives x=\dfrac{4}{5}.
No comments:
Post a Comment