Prove that the diameter of the incircle of a triangle ABC is equal to \dfrac{AB-BC+CA}{\sqrt{3}} if and only if \angle BAC = 60^{\circ}.
Proposed by Titu Andreescu.
Solution:
Let r be the radius of the incircle of \triangle ABC and let \alpha=\angle BAC. Clearly 0^{\circ} < \alpha < 180^{\circ} and 2r=\dfrac{2AB\cdot CA \sin \alpha}{AB+BC+CA}. Then 2r=\dfrac{AB-BC+CA}{\sqrt{3}} \iff AB^2+CA^2+2AB\cdot CA - BC^2=2\sqrt{3}AB \cdot CA \sin \alpha. Since BC^2=AB^2+CA^2-2AB\cdot CA \cos \alpha, we obtain 2r=\dfrac{AB-BC+CA}{\sqrt{3}} \iff 1 + \cos \alpha = \sqrt{3} \sin \alpha, i.e. if and only if \sin (\alpha-30^{\circ})=\dfrac{1}{2}, which gives \alpha=60^{\circ}.
No comments:
Post a Comment