Processing math: 100%

Monday, November 5, 2012

Mathematical Reflections 2012, Issue 4 - Problem U237

Problem:
Let \mathcal{H} be a hyperbola with foci A and B and center O. Let P be an arbitrary point
on \mathcal{H} and let the tangent of \mathcal{H} through P cut its asymptotes at M and N. Prove that PA + PB = OM + ON.

Proposed by Luis Gonzalez.

Solution:
Let \mathcal{H}: \dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1, so that O=(0,0). By symmetry, suppose that P is on the first quadrant. Then P=\left(k,\dfrac{b}{a}\sqrt{k^2-a^2}\right), where k \geq a is an arbitrary real number. The equation of the tangent of \mathcal{H} at P is \dfrac{kx}{a^2}-\dfrac{\dfrac{b}{a}\sqrt{k^2-a^2}y}{b^2}=1, so intersecting this line with the asymptotes y=\pm \dfrac{b}{a}x we get the points M=\left(k+\sqrt{k^2-a^2},\dfrac{b}{a}(k+\sqrt{k^2-a^2})\right), \qquad N=\left(k-\sqrt{k^2-a^2},-\dfrac{b}{a}(k-\sqrt{k^2-a^2})\right). Then
OM+ON=\dfrac{2k}{a}\sqrt{a^2+b^2}=2ke, where e=\sqrt{a^2+b^2}/a is the eccentricity of the hyperbola. Since the foci have coordinates A=(-c,0), B=(c,0) where c=\sqrt{a^2+b^2}, we have
\begin{array}{lcl}PA+PB & = &\sqrt{(k+c)^2+\dfrac{b^2}{a^2}(k^2-a^2)}+\sqrt{(k-c)^2+\dfrac{b^2}{a^2}(k^2-a^2)} \\ & = & \dfrac{4kc}{\sqrt{(k+c)^2+\dfrac{b^2}{a^2}(k^2-a^2)}-\sqrt{(k-c)^2+\dfrac{b^2}{a^2}(k^2-a^2)}}\\ &=&\dfrac{2kc}{a}\\&=&2ke \end{array}
and the statement follows.

No comments:

Post a Comment