Let a,b,c be real numbers such that \left(-\dfrac{a}{2}+\dfrac{b}{3}+\dfrac{c}{6}\right)^3+\left(\dfrac{a}{3}+\dfrac{b}{6}-\dfrac{c}{2}\right)^3+\left(\dfrac{a}{6}-\dfrac{b}{2}+\dfrac{c}{3}\right)^3=\dfrac{1}{8}.
Prove that (a-3b+2c)(2a+b-3c)(-3a+2b+c)=9.
Proposed by Titu Andreescu.
Solution:
From the given equality, we have (-3a+2b+c)^3+(2a+b-3c)^3+(a-3b+2c)^3=27.
Let x=-3a+2b+c, y=2a+b-3c, z=a-3b+2c. Since x+y+z=0, using the well known identity
x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx),
we get x^3+y^3+z^3=3xyz, i.e.
3(-3a+2b+c)(2a+b-3c)(a-3b+2c)=27,
which gives (-3a+2b+c)(2a+b-3c)(a-3b+2c)=9.
No comments:
Post a Comment