Let a>b be positive real numbers. Prove that c_n=\dfrac{\sqrt[n+1]{a^{n+1}-b^{n+1}}}{\sqrt[n]{a^n-b^n}}
is a decreasing sequence and find its limit.
Proposed by Ivan Borsenco.
Solution:
Let c_n=\dfrac{\sqrt[n+1]{1-x^{n+1}}}{\sqrt[n]{1-x^n}}, where x=b/a < 1. We first prove that c_n > 1. Let b_n=c^{n(n+1)}_n. Then b_n(x)=\dfrac{(1-x^{n+1})^n}{(1-x^n)^{n+1}} and b'_n(x)=\dfrac{n(n+1)x^{n-1}(1-x^{n+1})^{n-1}(1-x^n)^n(1-x)}{(1-x^n)^{2(n+1)}}. So, b'_n(x) > 0 for all x \in (0,1), so b_n(x) is increasing in (0,1) and b_n(x) > b_n(0)=1, i.e. c^{n(n+1)}_n > 1, which yields c_n > 1. Now, we prove that c_n is a decreasing sequence. We have \dfrac{b_{n-1}}{b_n}=\left(\dfrac{(1-x^n)^2}{(1-x^{n-1})(1-x^{n+1})}\right)^n > 1, so c_{n-1}^{(n-1)n}>c_n^{n(n+1)}=c_n^{(n-1)n}c_n^{2n}>c_n^{(n-1)n}, i.e. c_{n-1}>c_n. Moreover,
\lim_{n \to \infty} \log c_n=\lim_{n \to \infty} \left[\dfrac{1}{n+1}\log (1-x^{n+1})-\dfrac{1}{n}\log(1-x^n)\right]=0, so \lim_{n \to \infty} c_n= \lim_{n \to \infty} e^{\log c_n}=1.
No comments:
Post a Comment