Loading [MathJax]/extensions/TeX/newcommand.js

Wednesday, May 10, 2017

Mathematical Reflections 2017, Issue 1 - Problem O397

Problem:
Solve in integers the equation: (x^3-1)(y^3-1)=3(x^2y^2+2).

Proposed by Titu Andreescu, University of Texas at Dallas, USA


Solution:
The given equation can be written as x^3y^3-(x^3+y^3)-3x^2y^2=5. Let s=x+y and t=xy. Observe that x^3+y^3=(x+y)^3-3xy(x+y)=s^3-3st, so the given equation becomes (t^3-s^3)-3t(t-s)=5, i.e. (t-s)(t^2+ts+s^2-3t)=5.
We obtain the four systems of equations: \begin{array}{rcl} t-s&=&\pm 1 \\ t^2+ts+s^2-3t&=& \pm 5, \end{array} \qquad \begin{array}{rcl} t-s&=&\pm 5 \\ t^2+ts+s^2-3t&=& \pm 1 \end{array}
If t-s=\pm 1, then t^2-2ts+s^2=1 and subtracting this equation to the second equation, we get 3ts-3t=4 or 3ts-3t=-6. The first equation is impossible, the second gives t(s-1)=-2. So, (s,t) \in \{(-1,1),(0,2),(2,-2),(3,-1)\}. It's easy to see that none of these pairs satisfies t-s=\pm 1, so there are no solutions in this case. If t-s=\pm 5, then t^2-2ts+s^2=25 and subtracting this equation to the second equation, we get 3ts-3t=-24 or 3ts-3t=-26. The second equation is impossible, the first gives t(s-1)=-8. So, (s,t) \in \{(-7,1),(-3,2),(-1,4),(0,8),(2,-8),(3,-4),(5,-2),(9,-1)\}. As t-s=\pm 5, we obtain (s,t) \in \{(-3,2),(-1,4)\}. Since s and t also satisfy the condition s^2-4t=n^2 for some n \in \mathbb{Z}, we obtain (s,t)=(-3,2). So, x+y=-3 and xy=2, which gives (x,y) \in \{(-1,-2),(-2,-1)\}.

Mathematical Reflections 2017, Issue 1 - Problem U402

Problem:
Let n be a positive integer and let P(x) be a polynomial of degree at most n such that |P(x)| \leq x+1 for all x \in [0,n]. Prove that
|P(n+1)|+|P(-1)| \leq (n+2)(2^{n+1}-1)

Proposed by Alessandro Ventullo, Milan, Italy


Solution:
In order to prove the inequality, we deduce upper bounds for |P(-1)| and |P(n+1)|.
Let a_0,a_1,\ldots,a_n be n+1 distinct real numbers. Let L_i(x)=\prod_{\begin{smallmatrix} j=0\\ j\neq i\end{smallmatrix}}^{n} \dfrac{x-a_j}{a_i-a_j} be the n-th degree Lagrange base polynomials for i=0,1,\ldots,n. We first prove that \{L_0(x),\ldots,L_n(x)\} is a basis for \mathbb{R}_n[x]. Since \dim \mathbb{R}_n[x]=n+1, we only have to prove that \{L_0(x),\ldots,L_n(x)\} are linearly independent. Let (\lambda_0,\ldots,\lambda_{n+1}) \in \mathbb{R}^{n+1} such that \lambda_0L_0(x)+\ldots+\lambda_n L_n(x)=0 For each i \in \{0,1,\ldots,n\}, if x=a_i we have 0=\sum_{j=0}^n \lambda_j L_j(a_i)=\sum_{j=0}^n \lambda_j \delta_{ji}=\lambda_i, so \lambda_i=0 for any i \in \{0,1,\ldots,n\} and this shows that \{L_0(x),\ldots,L_n(x)\} is a basis for \mathbb{R}_n[x]. So, if P \in \mathbb{R}_n[x], there exists (\lambda_0,\ldots,\lambda_n) \in \mathbb{R}^{n+1} such that P(x)=\sum_{j=0}^n \lambda_jL_j(x). If x=a_i, then P(a_i)=\sum_{j=0}^n \lambda_j L_j(a_i)=\sum_{j=0}^n \lambda_j \delta_{ji}=\lambda_i, so we can write P(x)=\sum_{j=0}^n P(a_j)L_j(x). If (a_0,a_1,\ldots,a_n)=(0,1,\ldots,n), we have P(x)=\sum_{j=0}^n P(j)L(x)
Now, we have \renewcommand{\arraystretch}{2} \begin{array}{lcl} \displaystyle |L_i(-1)|=\left| \prod_{\begin{smallmatrix} j=0\\ j\neq i\end{smallmatrix}}^{n} \dfrac{-1-j}{i-j} \right|&=& \displaystyle \prod_{j=0}^{i-1} \dfrac{j+1}{i-j} \prod_{j=i+1}^n \dfrac{j+1}{j-i}\\&=& \displaystyle \dfrac{i!}{i!}\cdot \dfrac{(n+1)!}{(i+1)!(n-i)!}\\&=& \displaystyle {n+1 \choose i+1} \end{array}
and
\renewcommand{\arraystretch}{2} \begin{array}{lcl} \displaystyle |L_i(n+1)|=\left| \prod_{\begin{smallmatrix} j=0\\ j\neq i\end{smallmatrix}}^{n} \dfrac{n+1-j}{i-j} \right|&=& \displaystyle \prod_{j=0}^{i-1} \dfrac{n+1-j}{i-j} \prod_{j=i+1}^n \dfrac{n+1-j}{j-i}\\&=& \displaystyle \dfrac{(n+1)!}{i!(n+1-i)!}\cdot \dfrac{(n-i)!}{(n-i)!}\\&=& \displaystyle {n+1 \choose i}. \end{array}
Hence, \renewcommand{\arraystretch}{2} \begin{array}{lcl} \displaystyle |P(-1)|=\left| \sum_{i=0}^n P(i)L_i(-1) \right| & \leq & \displaystyle \sum_{i=0}^n |P(i)L_i(-1)| \\ & \leq & \displaystyle \sum_{i=0}^n (i+1) {n+1 \choose i+1}\\&=& \displaystyle (n+1) \sum_{i=0}^n {n \choose i}\\&=&(n+1)2^n \end{array} and
\renewcommand{\arraystretch}{2} \begin{array}{lcl} \displaystyle |P(n+1)|=\left| \sum_{i=0}^n P(i)L_i(n+1) \right| & \leq & \displaystyle \sum_{i=0}^n |P(i)L_i(n+1)| \\ & \leq & \displaystyle \sum_{i=0}^n (i+1) {n+1 \choose i} \\ &=& \displaystyle \sum_{i=0}^n i{n+1 \choose i}+\sum_{i=0}^n {n+1 \choose i} \\ &=& \displaystyle (n+1) \sum_{i=1}^n {n \choose i-1}+ \sum_{i=0}^n {n+1 \choose i} \\&=&(n+1)(2^n-1)+(2^{n+1}-1). \end{array}
Adding the last two inequalities, we get the desired inequality.

Mathematical Reflections 2017, Issue 1 - Problem U401

Problem:
Let P be a polynomial of degree n such that P(k)=\dfrac{1}{k^2} for all k=1,2,\ldots,n+1. Determine P(n+2).

Proposed by Dorin Andrica, Babe\c{s}-Bolyai University, Cluj-Napoca, Romania


Solution:
There exists a unique interpolating polynomial P of degree n such that P(k)=\dfrac{1}{k^2} for all k=1,2,\ldots,n+1 and this is
P(x)=\sum_{k=1}^{n+1} \left(\prod_{\stackrel{1\leq j\leq n+1}{j\neq k}}\frac{x-j}{k-j}\right)\dfrac{1}{k^2}.
Observe that \renewcommand{\arraystretch}{2} \begin{array}{lll} \displaystyle \prod_{\stackrel{1\leq j\leq n+1}{j\neq k}}\frac{n+2-j}{k-j}&=&\displaystyle\prod_{j=1}^{k-1} \left(\dfrac{n+2-j}{k-j}\right)\prod_{j=k+1}^{n+1} \left(\dfrac{n+2-j}{k-j}\right)\\&=& \displaystyle \dfrac{(n+1)!}{(n-k+2)!(k-1)!}\cdot\dfrac{(n-k+1)!}{(-1)^{n-k+1}(n-k+1)!}\\&=& \displaystyle (-1)^{n-k+1}{n+1 \choose k-1}. \end{array}
So, P(n+2)=\sum_{k=1}^{n+1} (-1)^{n-k+1}{n+1 \choose k-1}\dfrac{1}{k^2}.

Mathematical Reflections 2017, Issue 1 - Problem U397

Problem:
Let T_n be the n-th triangular number. Evaluate \sum_{n \geq 1} \dfrac{1}{(8T_n-3)(8T_{n+1}-3)}

Proposed by Titu Andreescu, University of Texas at Dallas, USA


Solution:
Let t_n=\dfrac{1}{(8T_n-3)(8T_{n+1}-3)}.
Observe that \renewcommand{\arraystretch}{2} \begin{array}{lll} \dfrac{1}{t_n}=(8T_n-3)(8T_{n+1}-3)&=&\left(8\dfrac{n(n+1)}{2}-3\right)\left(8\dfrac{(n+1)(n+2)}{2}-3\right)\\&=&(4n^2+4n-3)(4n^2+12n+5)\\&=&(2n-1)(2n+3)(2n+1)(2n+5). \end{array}
We get \renewcommand{\arraystretch}{2} \begin{array}{lll} t_n&=&\dfrac{1}{(2n-1)(2n+3)(2n+1)(2n+5)}\\&=&\dfrac{1}{8}\dfrac{1}{(2n-1)(2n+5)}-\dfrac{1}{8}\dfrac{1}{(2n+1)(2n+3)}\\&=&\dfrac{1}{48}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+5}\right)-\dfrac{1}{16}\left(\dfrac{1}{2n+1}-\dfrac{1}{2n+3}\right)\\&=&\dfrac{1}{48}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)+\dfrac{1}{48}\left(\dfrac{1}{2n+3}-\dfrac{1}{2n+5}\right)-\dfrac{1}{24}\left(\dfrac{1}{2n+1}-\dfrac{1}{2n+3}\right). \end{array}
So, \renewcommand{\arraystretch}{2} \begin{array}{lll} \displaystyle \sum_{n \geq 1} t_n&=& \displaystyle \dfrac{1}{48}\sum_{n=1}^\infty \left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)+\dfrac{1}{48}\sum_{n=1}^\infty \left(\dfrac{1}{2n+3}-\dfrac{1}{2n+5}\right)-\dfrac{1}{24}\sum_{n=1}^\infty \left(\dfrac{1}{2n+1}-\dfrac{1}{2n+3}\right) \\ &=&\dfrac{1}{48}+\dfrac{1}{48}\cdot\dfrac{1}{5}-\dfrac{1}{24}\cdot\dfrac{1}{3} \\ &=& \dfrac{1}{90}. \end{array}

Mathematical Reflections 2017, Issue 1 - Problem S402

Problem:
Prove that \sum_{k=1}^{31} \dfrac{k}{(k-1)^{4/5}+k^{4/5}+(k+1)^{4/5}}<\dfrac{3}{2}+\sum_{k=1}^{31} (k-1)^{1/5}.

Proposed by Titu Andreescu, University of Texas at Dallas, USA


Solution:
Observe that \dfrac{k}{(k-1)^{4/5}+k^{4/5}+(k+1)^{4/5}}<\dfrac{k}{3(k-1)^{4/5}}, so
\begin{array}{lll} \displaystyle \sum_{k=1}^{31} \left(\dfrac{k}{(k-1)^{4/5}+k^{4/5}+(k+1)^{4/5}}-(k-1)^{1/5}\right)&<& \displaystyle \dfrac{1}{1+2^{4/5}}-\dfrac{1}{3}\sum_{k=2}^{31} \dfrac{2k-3}{(k-1)^{4/5}} \\ &<& \displaystyle \dfrac{1}{1+2^{4/5}}-\dfrac{1}{3}\sum_{k=2}^{31} \dfrac{2k-3}{k-1}\\&<& \displaystyle \dfrac{1}{1+2^{4/5}}-\dfrac{1}{3}\left(1+\dfrac{3}{2}\right)<0. \end{array}
So, \sum_{k=1}^{31} \left(\dfrac{k}{(k-1)^{4/5}+k^{4/5}+(k+1)^{4/5}}-(k-1)^{1/5}\right)<0<\dfrac{3}{2}.

Mathematical Reflections 2017, Issue 1 - Problem S400

Problem:
Find all n for which (n-4)!+\dfrac{1}{36n}(n+3)! is a perfect square.

Proposed by Titu Andreescu, University of Texas at Dallas, USA


Solution:
Clearly, n \geq 4. We have \begin{array}{lll} (n-4)!+\dfrac{1}{36n}(n+3)!&=&(n-4)!\left(1+\dfrac{1}{36n}(n-3)(n-2)(n-1)n(n+1)(n+2)(n+3)\right)\\&=&(n-4)!\left(1+\dfrac{1}{36}(n^2-9)(n^2-4)(n^2-1)\right)\\&=&(n-4)!\left(\dfrac{n^6-14n^4+49n^2}{36}\right)\\&=&(n-4)!\left(\dfrac{n(n^2-7)}{6}\right)^2. \end{array}
Observe that n(n^2-7)=n^3-7n \equiv n^3-n \equiv 0 \pmod{6}, so \dfrac{n(n^2-7)}{6} is an integer. It follows that (n-4)!\left(\dfrac{n(n^2-7)}{6}\right)^2 is a perfect square if and only if (n-4)! is a perfect square. If n=4 or n=5, then (n-4)!=1, which is a perfect square. Let n>5 and let p be the greatest prime that divides (n-4)!. By Bertrand's Postulate, there exists a prime q such that p<q<2p. If 2p \leq n-4, then q<n-4, which gives q \ | \ (n-4)!, contradiction. So, n-4<2p, which means that p \ | \ (n-4)! and p^2 \nmid (n-4)!. So, (n-4)! is not a perfect square if n>5. Therefore, n \in \{4,5\}.

Mathematical Reflections 2017, Issue 1 - Problem S397

Problem:
Let a,b,c be positive real numbers. Prove that \dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}+\dfrac{3(ab+bc+ca)}{2(a+b+c)} \geq a+b+c.

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam


Solution:
The given inequality is equivalent to (a+b+c)\left(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\right)+\dfrac{3}{2}(ab+bc+ca) \geq (a+b+c)^2, i.e.

\dfrac{a^2c}{a+b}+\dfrac{b^2a}{b+c}+\dfrac{c^2b}{c+a} \geq \dfrac{1}{2}(ab+bc+ca) \qquad (1)

By the AM-GM Inequality, we have \dfrac{2a^2c}{a+b}+\dfrac{c(a+b)}{2} \geq 2ca, \dfrac{2b^2a}{b+c}+\dfrac{a(b+c)}{2} \geq 2ab, \dfrac{2c^2b}{c+a}+\dfrac{b(c+a)}{2} \geq 2bc. Adding these three inequalities, we get inequality (1). The equality holds if and only if a=b=c.

Mathematical Reflections 2017, Issue 1 - Problem J401

Problem:
Find all integers n for which n^2+2^n is a perfect square.

Proposed by Adrian Andreescu, Dallas, Texas

Solution:
Clearly, n \geq 0. If n=0, we get n^2+2^n=1, which is a perfect square. Let n>0. If n is even, then n=2k for some k \in \mathbb{N}^*. If k \geq 7, then (2^k)^2=2^{2k}<4k^2+2^{2k}<2^{2k}+2^{k+1}+1=(2^k+1)^2, so n^2+2^n is not a perfect square if n is even and n \geq 14. So, n \in \{2,4,6,8,10,12\}. An easy check gives the solution n=6. If n is odd, then n=2k+1 for some k \in \mathbb{N}. If k=0, we get no solutions, so assume k \geq 1. Let m \in \mathbb{N}^* such that (2k+1)^2+2^{2k+1}=m^2. Then, (m-2k-1)(m+2k+1)=2^{2k+1}. Since m-2k-1<m+2k+1 and the two factors have the same parity, then \begin{array}{lll} m-2k-1&=&2^a \\ m+2k+1&=&2^b, \end{array} where a,b \in \mathbb{N}, 1 \leq a \leq b \leq 2k and a+b=2k+1. If a \geq 2, then subtracting we get 2(2k+1)=2^b-2^a=2^a(2^{b-a}-1), i.e. 2k+1=2^{a-1}(2^{b-a}-1), contradiction. So, a=1 and b=2k, which gives 2k+1=2^{2k-1}-1, i.e. k=2^{2k-2}-1. If k \geq 2, then k<2^{2k-2}-1, so it must be k=1. But if k=1, we get no solutions. So, there are no solutions when n is odd. We conclude that n \in \{0,6\}.

Mathematical Reflections 2017, Issue 1 - Problem J400

Problem:
Prove that for all real numbers a,b,c the following inequality holds:
\dfrac{|a|}{1+|b|+|c|}+\dfrac{|b|}{1+|c|+|a|}+\dfrac{|c|}{1+|a|+|b|} \geq \dfrac{|a+b+c|}{1+|a+b+c|}.
When does the equality occur?

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam


Solution:
 Put s=a+b+c. By Triangle Inequality, we have |s| \leq |a|+|b|+|c|, so |s|(1+|a|+|b|+|c|) \leq (1+|s|)(|a|+|b|+|c|), i.e.
\dfrac{|s|}{1+|s|} \leq \dfrac{|a|+|b|+|c|}{1+|a|+|b|+|c|}. Using the fact that |x| \geq 0 for all real numbers x, we have
\begin{array}{lll} \dfrac{|a|+|b|+|c|}{1+|a|+|b|+|c|}&=&\dfrac{|a|}{1+|a|+|b|+|c|}+\dfrac{|b|}{1+|a|+|b|+|c|}+\dfrac{|c|}{1+|a|+|b|+|c|} \\ & \leq & \dfrac{|a|}{1+|b|+|c|}+\dfrac{|b|}{1+|c|+|a|}+\dfrac{|c|}{1+|a|+|b|}. \end{array}
So, \dfrac{|s|}{1+|s|} \leq \dfrac{|a|}{1+|b|+|c|}+\dfrac{|b|}{1+|c|+|a|}+\dfrac{|c|}{1+|a|+|b|}, which is the desired inequality. Equality occurs if and only if |a|=|b|=|c|=0, i.e. if and only if a=b=c=0.

Mathematical Reflections 2017, Issue 1 - Problem J399

Problem:
Two nine-digit numbers m and n are called cool if

   (a) they have the same digits but in different order,
   (b) no digit appears more than once,
   (c) m divides n or n divides m.

Prove that if m and n are cool, then they contain digit 8.

Proposed by Titu Andreescu, Dallas, Texas

Solution:
Assume by contradiction that there exist two \emph{cool} numbers m and n not containing digit 8. Then in m and n appear the digits 0,1,2,3,4,5,6,7,9 exactly once. Since the sum of their digits is 37, then m,n \equiv 1 \pmod{9}. Assume without loss of generality that m divides n. Then, n=mk, where k is a natural number. Hence, n-m=m(k-1). Reducing modulo 9 this equation, we get k-1 \equiv 0 \pmod{9}, i.e. k-1 is divisible by 9. Since m and n have the same digits in different order, then m \neq n, which gives k \neq 1. So, k \geq 10. But then n \geq 10m, i.e. n has more digits than m, contradiction.

Mathematical Reflections 2017, Issue 1 - Problem J398

Problem:
Let a,b,c be real numbers. Prove that (a^2+b^2+c^2-2)(a+b+c)^2+(1+ab+bc+ca)^2 \geq 0.

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

Solution:
Let x=a+b+c and y=ab+bc+ca. Then, a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)=x^2-2y. So,
\begin{array}{lll} (a^2+b^2+c^2-2)(a+b+c)^2+(1+ab+bc+ca)^2&=&(x^2-2y-2)x^2+(1+y)^2\\&=&x^4-2x^2(y+1)+(y+1)^2\\&=&(x^2-y-1)^2 \\ & \geq & 0. \end{array}
Equality holds if and only if x^2=y+1, i.e. if and only if (a+b+c)^2=ab+bc+ca+1, i.e. if and only if a^2+b^2+c^2=1-ab-bc-ca.

Mathematical Reflections 2017, Issue 1 - Problem J397

Problem:
Find all positive integers n for which 3^4+3^5+3^6+3^7+3^n is a perfect square.

Proposed by Adrian Andreescu, Dallas, Texas

Solution:
We have 3^4+3^5+3^6+3^7+3^n=3240+3^n. If n \leq 4, we obtain that 3240+3^n is a perfect square only when n=2. Assume that n>4. Then, there exists t \in \mathbb{N} such that 3240+3^n=t^2, i.e. 3^4(40+3^{n-4})=t^2. Since 3^4 is a perfect square, it follows that 40+3^{n-4} must be a perfect square, so there exists m \in \mathbb{N} such that 40+3^{n-4}=m^2. If n-4 is odd, then 40+3^{n-4} \equiv 3 \pmod{4}, so it cannot be a perfect square. It follows that n-4 is even, i.e. n-4=2k, where k \in \mathbb{N}, k>2. So, 40+3^{2k}=m^2, i.e. (m-3^k)(m+3^k)=40. Since m-3^k<m+3^k and both factors have the same parity, then we obtain the two systems of equations
\begin{array}{lll} m-3^k&=&2 \\ m+3^k&=&20, \end{array} \qquad \begin{array}{lll} m-3^k&=&4 \\ m+3^k&=&10. \end{array}
Subtracting the first equation to the second equation of each system, we get 3^k=9 or 3^k=3, i.e. k=2 or k=1. So, n=8 or n=6. We conclude that n \in \{2,6,8\}.

Mathematical Reflections 2016, Issue 6 - Problem O391

Problem:
Find all 4-tuples (x,y,z,w) of positive integers such that (xy)^3+(yz)^3+(zw)^3-252yz=2016.

Proposed by Titu Andreescu, University of Texas at Dallas, USA


Solution:
The given equation can be written as (xy)^3+(zw)^3+yz(y^2z^2-252)=2016. Observe that it must be yz(y^2z^2-252) \leq 2016, so yz \leq 18. It follows that \begin{array}{rcl} (xy)^3+(zw)^3 & \in & \{2267,2512,2745,2960,3151,3312,3437,3520,3555,\\ & & 3536,3457,3312,3095,2800,2421,1952,1387,720\}. \end{array}
A case by case analysis gives (xy)^3+(zw)^3 \in \{2745,2960\}. If (xy)^3+(zw)^3=2745, we get xy=1,zw=14,yz=3 or xy=14,zw=1,yz=3, which gives no solutions. If (xy)^3+(zw)^3=2960, then xy=6,zw=14,yz=4 or xy=14,zw=6,yz=4. We get (x,y,z,w) \in \{(3,2,2,7),(7,2,2,3)\}.

Mathematical Reflections 2016, Issue 6 - Problem U395

Problem:
Evaluate \displaystyle \int \dfrac{x^2+6}{(x \cos x-3\sin x)^2} \ dx.

Proposed by Abdelouahed Hamdi, Doha, Qatar


Solution:Observe that \begin{array}{lll} \dfrac{x^2+6}{(x \cos x-3\sin x)^2}&=&\dfrac{x^2(\cos^2 x +\sin^2 x)+6(\cos^2 x + \sin^2 x)+5 x \sin x \cos x - 5x \sin x \cos x}{(x \cos x-3\sin x)^2} \\ &=& \dfrac{(x \cos x-2\sin x)(x \cos x-3 \sin x)+(x \sin x+3 \cos x)(x \sin x+2\cos x)}{(x\cos x-3\sin x)^2}\\&=& \dfrac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2} \\ &=&\left(\dfrac{f(x)}{g(x)}\right)', \end{array} where f(x)=x\sin x+3\cos x and g(x)=x \cos x -3\sin x. So, \int \dfrac{x^2+6}{(x \cos x-3\sin x)^2} \ dx=\dfrac{x\sin x+3\cos x}{x \cos x-3\sin x}+C.

Mathematical Reflections 2016, Issue 6 - Problem U391

Problem:
Find all positive integers n such that \varphi^3(n) \leq n^2.

Proposed by Alessandro Ventullo, Milan, Italy

Solution:
Clearly n=1 satisfies the condition. Let n>1 and let n=\prod_{j=1}^m p_j^{k_j}, where p_j is the j-th prime and k_j \in \mathbb{N} for j=1,2,\ldots,m. Since f(n)=n^2 and \varphi(n) are multiplicative functions, then the given relation becomes \prod_{j=1}^m \varphi^3(p_j^{k_j}) \leq \prod_{j=1}^m p_j^{2k_j}. We use the following Lemma.


Lemma.
Let p be a prime number and let k be a positive integer.

    (a) If k=0, then \varphi^3(p^k)=p^{2k}.
    (b) If p \geq 5, then
    \varphi^3(p^k)>\dfrac{9}{4}p^{2k} \qquad \forall k \in \mathbb{N}^*. \qquad (1)
    (c) If p \geq 7, then \varphi^3(p^k)>4p^{2k} \qquad \forall k \in \mathbb{N}^*. \qquad (2)
    (d) If p \geq 11, then  \varphi^3(p^k)>8p^{2k} \qquad \forall k \in \mathbb{N}^*.  \qquad (3)


Proof. It's a simple computation.


From the inequality (1) in the Lemma we must consider only the primes p_1=2 and p_2=3.
If k_1>3, then \varphi^3(2^{k_1})=(2^{k_1}-2^{k_1-1})^3=2^{3(k_1-1)} > 2^{2k_1} and if k_2>1, then \varphi^3(3^{k_2})=(3^{k_2}-3^{k_2-1})^3=3^{3(k_2-1)}\cdot8 > 3^{2k_2}. So, there are no solutions if k_1=k_2=0 and k_j>0 for some j>2 or k_1>3 and k_2>1. So, k_1 \leq 3 or k_2 \leq 1.
\begin{description}
(a) If k_1=0, then n=\prod_{j=2}^m p_j^{k_j}. As before, we conclude immediately that there are solutions only if k_2 \leq 1 and k_j=0 for all j=1,2,\ldots,m. So, n=3.

(b) If k_1=1, then n=2a, where a is an odd number. Hence, \varphi^3(n)=\varphi^3(2a)=\varphi^3(2)\varphi^3(a)=\varphi^3(a). We have to find a odd such that \varphi^3(a) \leq 4a^2. From the inequality (2) in the Lemma we must consider only the primes p_2=3 and p_3=5. If k_2>2, then \varphi^3(3^{k_2})=3^{3(k_2-1)}\cdot2^3>4\cdot3^{2k_2} and if k_3>1, then \varphi^3(5^{k_3})=5^{3(k_3-1)}\cdot4^3>4\cdot5^{2k_3} So, there are no solutions for a if k_2=k_3=0 and k_j>0 for some j>3 or k_2>2 and k_3>1. It follows that k_2 \leq 2 or k_3 \leq 1.

  (i) If k_2=0, then we have a solution if k_3 \leq 1, so a \in \{1,5\}, which gives n \in \{2,10\}.

  (ii) If k_2=1, then a=3b, where b is a natural number nondivisible by 2 and 3. Hence, n=6b and \varphi^3(n)=\varphi^3(6b)=\varphi^3(6)\varphi^3(b)=8\varphi^3(b). We have to find b nondivisible by 2 and 3 such that 8\varphi^3(b) \leq 36b^2, i.e. \varphi^3(b) \leq \dfrac{9}{2}b^2. From the inequality (3) in the Lemma we must consider only the primes p_3=5 and p_4=7. If k_3>1, then \varphi^3(5^{k_3})=5^{3(k_3-1)}\cdot4^3>\dfrac{9}{2}\cdot5^{2k_3} and if k_4>1, then \varphi^3(7^{k_4})=7^{3(k_4-1)}\cdot6^3>\dfrac{9}{2}\cdot7^{2k_4} So, there are no solutions for b if k_3=k_4=0 and k_j>0 for some j>4 or k_3>1 and k_4>1. It follows that k_3 \leq 1 or k_4 \leq 1. If k_3=0, then we have a solution if k_4 \leq 1, so b \in \{1,7\}, which gives n \in \{6,42\}. If k_3=1, then b=5c, where c is a natural number nondivisible by 2,3,5. Hence, n=30c and \varphi^3(n)=\varphi^3(30c)=\varphi^3(30)\varphi^3(c)=512\varphi^3(c). We have to find c nondivisible by 2,3,5 such that 512\varphi^3(c) \leq 900c^2, i.e. \varphi^3(c) \leq \dfrac{225}{128}c^2. From the inequality (2) in the Lemma we have no primes for c. So, c=1 and n=30.

  (iii) If k_2=2, then a=9b, where b is a natural number nondivisible by 2 and 3. Hence, n=18b and \varphi^3(n)=\varphi^3(18b)=\varphi^3(18)\varphi^3(b)=216\varphi^3(b). We have to find b nondivisible by 2 and 3 such that 216\varphi^3(b) \leq 324b^2, i.e. \varphi^3(b) \leq \dfrac{3}{2}b^2. From the inequality (1) in the Lemma we have no primes for b. So, b=1 and n=18.

  (iv) If k_3=0, then we have a solution if k_2 \leq 2, so a \in \{1,3,9\}, which gives n \in \{2,6,18\}.

  (v) If k_3=1, then a=5b, where b is a natural number nondivisible by 2 and 5. Hence, n=10b and \varphi^3(n)=\varphi^3(10b)=\varphi^3(10)\varphi^3(b)=64\varphi^3(b). We have to find b nondivisible by 2 and 5 such that 64\varphi^3(b) \leq 100b^2, i.e. \varphi^3(b) \leq \dfrac{25}{16}b^2. From the inequality (2) in the Lemma we must consider only the prime p_2=3. If k_2>1, then \varphi^3(3^{k_2})=3^{3(k_2-1)}\cdot2^3>\dfrac{25}{16}\cdot3^{2k_2}. So, there are no solutions for b if k_2=0 and k_j>0 for some j>3 or k_2>1. It follows that k_2 \leq 1. If k_2=0, then b=1, which gives n=10. If k_2=1, then b=3c, where c is a natural number nondivisible by 2,3,5. Hence, n=30c and we conclude as in point (ii).

(c) If k_1=2, then n=4a, where a is an odd number. Hence, \varphi^3(n)=\varphi^3(4a)=\varphi^3(4)\varphi^3(a)=8\varphi^3(a). We have to find a odd such that 8\varphi^3(a) \leq 16a^2, i.e. \varphi^3(a) \leq 2a^2. From the inequality (1) in the Lemma we must consider only the prime p_2=3.  If k_2>1, then \varphi^3(3^{k_2})=3^{3(k_2-1)}\cdot2^3>2\cdot3^{2k_3}. So, there are no solutions for a if k_2=0 and k_j>0 for some j>2 or k_2>1. It follows that k_2 \leq 1. If k_2=0, then a=1 and n=4. If k_2=1, then a=3b, where b is a natural number nondivisible by 2 and 3. Hence, n=12b and \varphi^3(n)=\varphi^3(12b)=\varphi^3(12)\varphi^3(b)=64\varphi^3(b). We have to find b nondivisible by 2 and 3 such that 64\varphi^3(b) \leq 144b^2, i.e. \varphi^3(b) \leq \dfrac{9}{4}b^2. From the inequality (1) in the Lemma we have no primes for b. So, b=1 and n=12.

(d) If k_1=3, then n=8a, where a is an odd number. Hence, \varphi^3(n)=\varphi^3(8a)=\varphi^3(8)\varphi^3(a)=64\varphi^3(a). We have to find a odd such that 64\varphi^3(a) \leq 64a^2, i.e. \varphi^3(a) \leq a^2. We know that this inequality has a solution if k_2 \leq 1, so a \in \{1,3\}, which gives n \in \{8,24\}.

(e) If k_2=0, then n=\prod_{\substack{j=1 \\ j \neq 2}}^m p_j^{k_j}. As before, we conclude immediately that there are solutions only if k_1 \leq 3 and k_j=0 for all j=1,2,\ldots,m. So, n \in \{2,4,8\}.

(f) If k_2=1, then n=3a, where a is a natural number nondivisible by 3. Hence, \varphi^3(n)=\varphi^3(3a)=\varphi^3(3)\varphi^3(a)=8\varphi^3(a). We have to find a nondivisible by 3 such that 8\varphi^3(a) \leq 9a^2, i.e. \varphi^3(a) \leq \dfrac{9}{8}a^2. From the inequality (1) in the Lemma we must consider only the prime p_1=2. If k_1>2, then \varphi^3(2^{k_1})=2^{3(k_1-1)}>\dfrac{9}{8}\cdot2^{2k_1}. So, there are no solutions for a if k_1 and k_j>0 for some j>2 or k_1>2. It follows that k_1 \leq 2, so a \in \{1,2,4\}, which gives n \in \{1,6,12\}.

In conclusion, we have n \in \{1,2,3,4,6,8,10,12,18,24,30,42\}.

Note: Let A_x=\{n \in \mathbb{N}^* \ | \ \varphi(n) \leq n^x\}. Observe that the function g(x)=|A_x| is increasing for x \in [0,1). The problem tells us that g(2/3)=12. Moreover, it's easy to see that g(0)=2 and g(1/2)=4.

Mathematical Reflections 2016, Issue 6 - Problem S395

Problem:
Let a,b,c be positive integers such that a^2b^2+b^2c^2+c^2a^2-69abc=2016.
Find the least possible value of \min(a,b,c).

Proposed by Titu Andreescu, University of Texas at Dallas, USA


Solution:
Assume without loss of generality that a \leq b \leq c. If a=1, then b^2+b^2c^2+c^2-69bc=2016. This equation is equivalent to
(2bc-67)^2+4(c-b)^2=12553. It follows that 0 \leq c-b \leq 56 and 0 < bc \leq 89. Hence b^2 \leq 89, which gives b \leq 9. An easy check gives no positive integer solutions for c. If a=2, then 4b^2+b^2c^2+4c^2-138bc=2016.
This equation is equivalent to (bc-65)^2+4(c-b)^2=6241. It follows that 0 \leq c-b \leq 39 and 0 < bc \leq 144. Hence b^2 \leq 144, which gives b \leq 12. An easy check gives b=c=12, so the least possible value of \min(a,b,c) is 2.

Mathematical Reflections 2016, Issue 6 - Problem S393

Problem:
If n is an integer such that n^2+11 is a prime, prove that n+4 is not a perfect cube.

Proposed by Titu Andreescu, University of Texas at Dallas, USA


Solution:
Assume that n+4 is a perfect cube. Then n+4=m^3, where m \in \mathbb{Z}, i.e. n=m^3-4. It follows that
\begin{array}{lll} n^2+11&=&(m^3-4)^2+11\\&=&m^6-8m^3+27\\&=&m^6+m^3+27-9m^3\\&=&(m^2)^3+(m)^3+(3)^3-9m^3\\&=&(m^2+m+3)(m^4-m^3-2m^2-3m+9). \end{array} As m^2+m+3 \geq 3 and m^4-m^3-2m^2-3m+9 \geq 3 for all m \in \mathbb{Z}, then  n^2+11 is not prime, contradiction.

Mathematical Reflections 2016, Issue 6 - Problem J331

Problem:
Solve the equation 4x^3+\dfrac{127}{x}=2016.

Proposed by Adrian Andreescu, Dallas, Texas


Solution:
The given equation is equivalent to 4x^4-2016x+127=0. Observe that
\begin{array}{lll} 4x^4-2016x+127&=&4x^4-256x^2+(2x^2+16x)+127(2x^2-16x)+127\\&=&(2x^2-16x+1)(2x^2+16x)+127(2x^2-16x+1) \\ &=&(2x^2-16x+1)(2x^2+16x+127)\end{array}
So, the given equation becomes (2x^2-16x+1)(2x^2+16x+127)=0.
We obtain x=\dfrac{8 \pm \sqrt{62}}{2}, \qquad x=\dfrac{-8 \pm i\sqrt{190}}{2}.

Recreatii Matematice 2/2016, Problem VII.208

Problem:
Prove that the number N=2016^{n+1}-2015n-2016 has at least 27 divisors for any n \in \mathbb{N}^*.

Proposed by Alessandro Ventullo, Milan, Italy

Solution:
We have \begin{array}{lll} N&=&2016\cdot(2016^n-1)-2015n\\&=&2016\cdot2015\cdot(2016^{n-1}+2016^{n-2}+\ldots+1)-2015n\\&=&2015\cdot(2016^n+2016^{n-1}+\ldots+2016-n)\\&=&2015\cdot[(2016^n-1)+(2016^{n-1}-1)+\ldots+(2016-1)] \end{array}
Since 2016^n-1 is divisible by 2015 for all n \geq 1, we have that 2015^2 \ | \ N. As 2015=5\cdot13\cdot31, then 2015=5^2\cdot13^2\cdot31^2, which has 27 divisors. The conclusion follows.

Gazeta Matematica 6-7-8/2016, Problem 27253

Problem:
Evaluate \sum_{n=6}^{\infty} \dfrac{n^3-12n^2+47n-60}{n^5-5n^3+4n}

Proposed by Alessandro Ventullo, Milan, Italy


Solution:
Observe that n^3-12n^2+47n-60=(n-5)(n-4)(n-3) and n^5-5n^3+4n=(n-2)(n-1)n(n+1)(n+2), so we have to evaluate
\sum_{n=6}^{\infty} \dfrac{(n-5)(n-4)(n-3)}{(n-2)(n-1)n(n+1)(n+2)}.
Set f(x)=\dfrac{(x-5)(x-4)(x-3)}{(x-2)(x-1)x(x+1)(x+2)}. Since x=0,\pm 1,\pm 2 are simple poles, then \textrm{Res}(f,2)=\lim_{x \to 2}(x-2)f(x)=-\dfrac{1}{4}, \textrm{Res}(f,1)=\lim_{x \to 1}(x-1)f(x)=4, \textrm{Res}(f,0)=\lim_{x \to 0}xf(x)=-15, \textrm{Res}(f,-1)=\lim_{x \to -1}(x+1)f(x)=20, \textrm{Res}(f,-2)=\lim_{x \to -2}(x+2)f(x)=-\dfrac{35}{4}.
So, \begin{array}{lll} \dfrac{(n-5)(n-4)(n-3)}{(n-2)(n-1)n(n+1)(n+2)}&=&-\dfrac{1}{4(n-2)}+\dfrac{4}{n-1}-\dfrac{15}{n}+\dfrac{20}{n+1}-\dfrac{35}{4(n+2)}\\  &=&\left(-\dfrac{1}{4(n-2)}+\dfrac{1}{4(n+2)}\right)+\left(\dfrac{4}{n-1}-\dfrac{4}{n+1}\right)+\\&+&\left(-\dfrac{15}{n}+\dfrac{15}{n+1}\right)+\left(\dfrac{9}{n+1}-\dfrac{9}{n+2}\right). \end{array}
Since \sum_{n=6}^{\infty} \left(-\dfrac{1}{4(n-2)}+\dfrac{1}{4(n+2)}\right)=\dfrac{1}{4}\left(-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-\dfrac{1}{7}\right),
\sum_{n=6}^{\infty} \left(\dfrac{4}{n-1}-\dfrac{4}{n+1}\right)=4\left(\dfrac{1}{5}+\dfrac{1}{6}\right), \sum_{n=6}^{\infty} \left(-\dfrac{15}{n}+\dfrac{15}{n+1}\right)=-\dfrac{15}{6}, \sum_{n=6}^{\infty} \left(\dfrac{9}{n+1}-\dfrac{9}{n+2}\right)=-\dfrac{9}{8}, we have \sum_{n=6}^{\infty} \dfrac{(n-5)(n-4)(n-3)}{(n-2)(n-1)n(n+1)(n+2)}=\dfrac{1}{4}\left(-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-\dfrac{1}{7}\right)+4\left(\dfrac{1}{5}+\dfrac{1}{6}\right)-\dfrac{15}{6}-\dfrac{9}{8}=\dfrac{1}{16}.

Gazeta Matematica 6-7-8/2016, Problem 27248

Problem:
Solve in real numbers the equation: \sqrt[3]{x^6-1}-\sqrt[3]{3x^5-5x^3+3x}=x^2-x-1.

Proposed by Alessandro Ventullo, Milan, Italy


Solution:
Observe that \begin{array}{lll} (x^6-1)-(3x^5-5x^3+3x)&=&x^6-3x^5+5x^3-3x-1\\&=&(x^2-x-1)(x^4-2x^3-x^2+2x+1)\\&=&(x^2-x-1)(x^2-x-1)^2\\&=&(x^2-x-1)^3. \end{array} Then, from the identity (a-b)^3=a^3-b^3-3ab(a-b), the given equation can be written as
(x^6-1)-(3x^5-5x^3+3x)-3\sqrt[3]{x^6-1}\cdot\sqrt[3]{3x^5-5x^3+3x}\cdot[\sqrt[3]{x^6-1}-\sqrt[3]{3x^5-5x^3+3x}]=(x^2-x-1)^3, i.e. \sqrt[3]{x^6-1}\cdot\sqrt[3]{3x^5-5x^3+3x}\cdot[\sqrt[3]{x^6-1}-\sqrt[3]{3x^5-5x^3+3x}]=0. Since \sqrt[3]{x^6-1}-\sqrt[3]{3x^5-5x^3+3x}=x^2-x-1, then the given equation becomes \sqrt[3]{x^6-1}\cdot\sqrt[3]{3x^5-5x^3+3x}\cdot(x^2-x-1)=0, i.e. (x^6-1)(3x^5-5x^3+3x)(x^2-x-1)=0. Finally, we have (x-1)(x^2+x+1)(x+1)(x^2-x+1)x(3x^4-5x^2+3)(x^2-x-1)=0.
Solving each equation, we get x \in \left\{-1,0,1,\dfrac{1-\sqrt{5}}{2},\dfrac{1+\sqrt{5}}{2}\right\}.

Gazeta Matematica 6-7-8/2016, Problem 27246

Problem:
Do there distinct prime numbers p,q,r such that \sqrt{p},\sqrt{q},\sqrt{r} are terms of an arithmetic progression?

Proposed by Alessandro Ventullo, Milan, Italy


Solution:
The answer is no. Assume by contradiction that \sqrt{p},\sqrt{q},\sqrt{r} are in the same arithmetic progression. If d \neq 0 is the common difference, then there exist integers m,n \neq 0 such that \begin{array}{rcl}\sqrt{q}-\sqrt{p}&=&md, \\ \sqrt{r}-\sqrt{p}&=&nd. \end{array} Dividing the first and the second equation by m and n respectively and substituting, we obtain m(\sqrt{r}-\sqrt{p})=n(\sqrt{q}-\sqrt{p}), whence m\sqrt{r}-n\sqrt{q}=(m-n)\sqrt{p}. Squaring both sides, we obtain rm^2+qn^2-2mn\sqrt{rq}=p(m-n)^2, which gives \sqrt{rq}=\dfrac{rm^2+qn^2-p(m-n)^2}{2mn}. But this equality is false, since the left-hand side is irrational and the right-hand side is rational.

Crux Mathematicorum 2016, Issue 1 - Problem 4108

Problem:
Write 2010 as a sum of consecutive squares. Is it possible to write 2014 as the sum of several consecutive squares?

Proposed by Alessandro Ventullo, Milan, Italy

Solution:
(a) Let k be the number of consecutive perfect squares which satisfy the conditions and let n \in \mathbb{N}.  Then, (n+1)^2+(n+2)^2+\ldots+(n+k)^2=2010. Since \begin{array}{lll}(n+1)^2+\ldots+(n+k)^2&=&kn^2+2n(1+2+\ldots+k)+(1^2+2^2+\ldots+k^2)\\&=&kn^2+2n\cdot\dfrac{k(k+1)}{2}+\dfrac{k(k+1)(2k+1)}{6}\\&=&\dfrac{k}{6}[6n^2+6n(k+1)+(k+1)(2k+1)], \end{array} we get
k[6n^2+6n(k+1)+(k+1)(2k+1)]=12060.    \qquad          (1)
Moreover, since \dfrac{k(k+1)(2k+1)}{6}=1^2+2^2+\ldots+k^2 \leq (n+1)^2+(n+2)^2+\ldots+(n+k)^2=2010, we get k \leq 17. So, k \ | \ 12060 and k \leq 17, which gives k \in \{1,2,3,4,5,6,9,10,12,15\}. Observe that if k=4h+2, where h \in \mathbb{N}, then the left-hand side in (1) is not divisible by 4, but the right-hand side is divisible by 4. So, k \in \{1,3,5,9,12,15\}. If k=15, equation (1) gives 6n(n+16)+496=804 \implies 6n(n+16)=308, a contradiction. If k=12, equation (1) gives 6n(n+13)+325=1005 \implies 6n(n+13)=680, a contradiction. If k=9, equation (1) gives 6n(n+10)+190=1340 \implies 6n(n+10)=1150, a contradiction. If k=5, equation (1) gives 6n(n+6)+66=2412 \implies n(n+6)=391, which gives n=17. Therefore, 18^2+19^2+20^2+21^2+22^2=2010, and the maximum number of consecutive perfect squares which satisfy the condition is 5.

(b) The answer is no. Indeed, if there exist k,n \in \mathbb{N} such that (n+1)^2+(n+2)^2+\ldots+(n+k)^2=2014, then as we have seen in (a),
k[6n^2+6n(k+1)+(k+1)(2k+1)]=2014\cdot6=12084   \qquad        (2)
and \dfrac{k(k+1)(2k+1)}{6} \leq 2014. So, k \ | \ 12084, k \leq 17 and k \neq 4h+2 for any h \in \mathbb{N}. It follows that k \in \{1,3,4,12\}. Since 2014 is not a perfect square, k \neq 1. As 24^2+25^2+26^2=1877<2014<25^2+26^2+27^2=2030, then k \neq 3. As 20^2+21^2+22^2+23^2=1854<2014<21^2+22^2+23^2+24^2=2030, then k \neq 4. Finally, if k=12 equation (2) gives 6n(n+13)+325=1007, i.e. 6n(n+13)=682, a contradiction. Therefore there does not exist k \in \mathbb{N} which satisfy the condition, and the conclusion follows.