Processing math: 8%

Wednesday, May 10, 2017

Mathematical Reflections 2017, Issue 1 - Problem J400

Problem:
Prove that for all real numbers a,b,c the following inequality holds:
\dfrac{|a|}{1+|b|+|c|}+\dfrac{|b|}{1+|c|+|a|}+\dfrac{|c|}{1+|a|+|b|} \geq \dfrac{|a+b+c|}{1+|a+b+c|}.
When does the equality occur?

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam


Solution:
 Put s=a+b+c. By Triangle Inequality, we have |s| \leq |a|+|b|+|c|, so |s|(1+|a|+|b|+|c|) \leq (1+|s|)(|a|+|b|+|c|), i.e.
\dfrac{|s|}{1+|s|} \leq \dfrac{|a|+|b|+|c|}{1+|a|+|b|+|c|}. Using the fact that |x| \geq 0 for all real numbers x, we have
\begin{array}{lll} \dfrac{|a|+|b|+|c|}{1+|a|+|b|+|c|}&=&\dfrac{|a|}{1+|a|+|b|+|c|}+\dfrac{|b|}{1+|a|+|b|+|c|}+\dfrac{|c|}{1+|a|+|b|+|c|} \\ & \leq & \dfrac{|a|}{1+|b|+|c|}+\dfrac{|b|}{1+|c|+|a|}+\dfrac{|c|}{1+|a|+|b|}. \end{array}
So, \dfrac{|s|}{1+|s|} \leq \dfrac{|a|}{1+|b|+|c|}+\dfrac{|b|}{1+|c|+|a|}+\dfrac{|c|}{1+|a|+|b|}, which is the desired inequality. Equality occurs if and only if |a|=|b|=|c|=0, i.e. if and only if a=b=c=0.

No comments:

Post a Comment