Find all 4-tuples (x,y,z,w) of positive integers such that (xy)^3+(yz)^3+(zw)^3-252yz=2016.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution:
The given equation can be written as (xy)^3+(zw)^3+yz(y^2z^2-252)=2016.
Observe that it must be yz(y^2z^2-252) \leq 2016, so yz \leq 18. It follows that \begin{array}{rcl} (xy)^3+(zw)^3 & \in & \{2267,2512,2745,2960,3151,3312,3437,3520,3555,\\ & & 3536,3457,3312,3095,2800,2421,1952,1387,720\}. \end{array}
A case by case analysis gives (xy)^3+(zw)^3 \in \{2745,2960\}. If (xy)^3+(zw)^3=2745, we get xy=1,zw=14,yz=3 or xy=14,zw=1,yz=3, which gives no solutions. If (xy)^3+(zw)^3=2960, then xy=6,zw=14,yz=4 or xy=14,zw=6,yz=4. We get (x,y,z,w) \in \{(3,2,2,7),(7,2,2,3)\}.
No comments:
Post a Comment